ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Доска имеет форму креста, который получается, если из квадратной доски 4×4 выкинуть угловые клетки. ![]() ![]() В классе 33 человека. У каждого ученика спросили, сколько у него в классе тезок и сколько однофамильцев (включая родственников). Оказалось, что среди названных чисел встретились все целые от 0 до 10 включительно. Докажите, что в классе есть два ученика с одинаковыми именем и фамилией. ![]() ![]() ![]() В четырёхугольнике ABCD точки K , L , M , N – середины сторон соответственно AB , BC , CD , DA . Прямые AL и CK пересекаются в точке P , прямые AM и CN – пересекаются в точке Q . Оказалось, что APCQ – параллелограмм. Докажите, что ABCD – тоже параллелограмм. ![]() ![]() ![]() Дана выпуклая фигура и точка A внутри нее. Докажите, что найдется хорда (т.е. отрезок, соединяющий две граничные точки выпуклой фигуры), проходящая через точку A и делящаяся точкой A пополам. ![]() ![]() |
Страница: << 7 8 9 10 11 12 13 >> [Всего задач: 98]
Вычислите $$\int \limits_0^{\pi} \big(|\sin(1999x)|-|\sin(2000x)|\big) \, dx.$$
На доске написано: x³ + ...x² + ...x + ... = 0. Два школьника по очереди вписывают вместо многоточий действительные числа. Цель первого – получить уравнение, имеющее ровно один действительный корень. Сможет ли второй ему помешать?
Коэффициенты квадратного уравнения ax² + bx + c = 0 удовлетворяют условию 2a + 3b + 6c = 0.
Пусть α – корень уравнения x² + px + q = 0, а β – уравнения x² – px – q = 0. Докажите, что между α и β лежит корень уравнения x² – 2px – 2q = 0.
Страница: << 7 8 9 10 11 12 13 >> [Всего задач: 98] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |