ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: 1 2 >> [Всего задач: 7]      



Задача 66640

Тема:   [ Корни. Степень с рациональным показателем (прочее) ]
Сложность: 3
Классы: 10,11

Автор: Шноль Д.Э.

Приведите пример таких целых чисел $a$, $b$, $c$, $d$, среди которых нет одинаковых, что $a^b=c^d$ и $b^a=d^c$.
Прислать комментарий     Решение


Задача 66611

Темы:   [ Корни. Степень с рациональным показателем (прочее) ]
[ Алгебраические неравенства (прочее) ]
Сложность: 4
Классы: 9,10,11

Докажите, что для любых различных натуральных чисел $m$ и $n$ справедливо неравенство $|\sqrt[n]{m}-\sqrt[m]{n}|>\frac{1}{mn}$.
Прислать комментарий     Решение


Задача 35105

Темы:   [ Рациональные и иррациональные числа ]
[ Корни. Степень с рациональным показателем (прочее) ]
[ Показательные функции и логарифмы (прочее) ]
Сложность: 3+
Классы: 10,11

Существуют ли такие иррациональные числа a и b, что степень ab - число рациональное?
Прислать комментарий     Решение


Задача 116373

Темы:   [ Формулы сокращенного умножения (прочее) ]
[ Корни. Степень с рациональным показателем (прочее) ]
[ Рациональные и иррациональные числа ]
Сложность: 4-
Классы: 9,10,11

Целые числа m и n таковы, что сумма     целая. Верно ли, что оба слагаемых целые?

Прислать комментарий     Решение

Задача 60851

Темы:   [ Рациональные и иррациональные числа ]
[ Корни. Степень с рациональным показателем (прочее) ]
[ Тригонометрия (прочее) ]
Сложность: 4
Классы: 8,9,10

Докажите иррациональность следующих чисел:

а)   ;

б)   ;

в)   ;

г)   ;

д)  cos 10° ;

е)  tg 10° ;

ж)  sin 1° ;

з)  log23 .

Прислать комментарий     Решение

Страница: 1 2 >> [Всего задач: 7]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .