ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Ссылки по теме:
Статья "Графы" (А. Савин) Статья "Элементы теории графов" (В. Фосс) Материалы по этой теме:
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи С помощью циркуля и линейки восстановите выпуклый четырёхугольник по четырём точкам – проекциям точки пересечения его диагоналей на стороны. ![]() ![]() С помощью циркуля и линейки постройте треугольник по стороне, медиане, проведённой к этой стороне, и высоте, проведённой к другой стороне.
![]() ![]() ![]() Дана квадратная таблица. В каждой её клетке стоит либо плюс, либо минус, причём всего плюсов и минусов поровну. ![]() ![]() ![]() Из целых чисел от 1 до 100 удалили k чисел. Обязательно ли среди оставшихся чисел можно выбрать k различных чисел с суммой 100, если ![]() ![]() |
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 384]
Несколько Совершенно Секретных Объектов соединены подземной железной дорогой таким образом, что каждый Объект напрямую соединён не более чем с тремя другими и от каждого Объекта можно добраться под землей до любого другого, сделав не более одной пересадки. Каково максимальное число Совершенно Секретных Объектов?
Пешеход обошёл шесть улиц одного города, пройдя каждую ровно два раза, но не смог обойти их, пройдя каждую лишь раз. Могло ли это быть?
В городе Маленьком 15 телефонов. Можно ли их соединить проводами так, чтобы каждый телефон был соединён ровно с пятью другими?
У короля 19 баронов-вассалов. Может ли оказаться так, что у каждого вассального баронства одно, пять или девять соседних баронств?
Может ли в государстве, в котором из каждого города выходит три дороги, быть ровно 100 дорог?
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 384] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |