Страница:
<< 12 13 14 15 16 17 18 >> [Всего задач: 629]
На прямой даны точки А, В и, кроме того, 57 точек, лежащих вне отрезка АВ. Каждая из этих 57 точек – либо красного, либо синего цвета. Рассмотрим следующие суммы:
S1 – сумма расстояний от точки А до всех красных точек плюс сумма расстояний от точки В до всех синих точек;
S2 – сумма расстояний от точки А до всех синих точек плюс сумма расстояний от точки В до всех красных точек.
Доказать, что S1 ≠ S2.
Клетки доски 7×7 окрашены в шахматном порядке так, что углы окрашены в чёрный цвет. Разрешается перекрашивать в противоположный цвет любые две соседние клетки. Можно ли с помощью таких операций перекрасить всю доску в белый цвет?
На столе стоят семь стаканов – все вверх дном. За один ход можно перевернуть любые четыре стакана.
Можно ли за несколько ходов добиться того, чтобы все стаканы стояли правильно?
|
|
Сложность: 3 Классы: 7,8,9
|
Петя вынимает из мешка чёрные и красные карточки и складывает их в две стопки. Класть карточку на другую карточку того же цвета запрещено. Десятая и одиннадцатая карточки, выложенные Петей, – красные, а двадцать пятая – чёрная. Какого цвета двадцать шестая выложенная карточка?
На доске записано число 123456789. У написанного числа выбираются две соседние цифры, если ни одна из них не равна 0, из каждой цифры вычитается по 1, и выбранные цифры меняются местами (например, из 123456789 можно за одну операцию получить 123436789). Какое наименьшее число может быть получено в результате таких
операций?
Страница:
<< 12 13 14 15 16 17 18 >> [Всего задач: 629]