Страница:
<< 44 45 46 47
48 49 50 >> [Всего задач: 354]
Докажите, что в правильном тридцатиугольнике A1...A30 следующие тройки диагоналей:
а) A1A7, A2A9, A4A23;
б) A1A7, A2A15, A4A29;
в) A1A13, A2A15, A10A29
пересекаются в одной точке.
Внутри круглого блина радиуса 10 запекли монету
радиуса 1. Каким наименьшим числом прямолинейных
разрезов можно наверняка задеть монету?
[Неравенство Птолемея]
|
|
Сложность: 7- Классы: 9,10,11
|
а) Докажите, что если
A,
B,
C и
D — произвольные точки плоскости, то
AB . CD +
BC . AD
AC . BD (
неравенство Птолемея).
б) Докажите, что если
A1,
A2, ...
A6 — произвольные точки
плоскости, то
в) Докажите, что (нестрогое) неравенство Птолемея обращается в равенство тогда
и только тогда, когда
ABCD — (выпуклый) вписанный четырехугольник.
г) Докажите, что неравенство из задачи б) обращается в равенство тогда и
только тогда, когда
A1...
A6 — вписанный шестиугольник.
[Оружности Схоуте]
|
|
Сложность: 7+ Классы: 9,10,11
|
Опустим из точки
M перпендикуляры
MA1,
MB1 и
MC1 на прямые
BC,
CA и
AB. Для фиксированного треугольника
ABC
множество точек
M, для которых угол Брокара треугольника
A1B1C1 имеет
заданное значение, состоит из двух окружностей, причем одна из них расположена
внутри описанной окружности треугольника
ABC, а другая вне ее
(
окружности Схоуте).
|
|
Сложность: 3 Классы: 9,10,11
|
Известно, что x + 2y + 3z = 1. Какое минимальное значение может принимать выражение x² + y² + z²?
Страница:
<< 44 45 46 47
48 49 50 >> [Всего задач: 354]