ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 3 задачи
Версия для печати
Убрать все задачи

Около треугольника ABC описана окружность. Пусть AD и BE — параллельные хорды. Известно, что отрезки BC и AD пересекаются, $ \angle$ECD = $ \alpha$ и $ \angle$BAC = 2$ \angle$ABC. Найдите отношение периметра треугольника ABC к радиусу вписанной в него окружности.

Вниз   Решение


Трапеция ABCD с основаниями BC = 2 и AD = 10 такова, что в неё можно вписать окружность и около неё можно описать окружность. Определите, где находится центр описанной окружности, т.е. расположен он внутри или вне её, или же на одной из сторон трапеции ABCD. Найдите также отношение радиусов описанной и вписанной окружностей.

ВверхВниз   Решение


Трапеция ABCD с основаниями BC = 1 и AD = 3 такова, что в неё можно вписать окружность и вокруг неё можно описать окружность. Определите, где находится центр описанной вокруг трапеции ABCD окружности, т.е. расположен ли он внутри, или вне, или же на одной из сторон трапеции ABCD. Найдите также площадь описанного круга.

Вверх   Решение

Задачи

Страница: << 23 24 25 26 27 28 29 >> [Всего задач: 293]      



Задача 53168

Темы:   [ Равнобедренные, вписанные и описанные трапеции ]
[ Теорема синусов ]
Сложность: 4-
Классы: 8,9

Дана равнобедренная трапеция, в которую вписана окружность и около которой описана окружность. Отношение длины описанной окружности к длине вписанной окружности равно 2$ \sqrt{5}$. Найдите углы трапеции.

Прислать комментарий     Решение


Задача 53181

Темы:   [ Равнобедренные, вписанные и описанные трапеции ]
[ Вспомогательные подобные треугольники ]
Сложность: 4-
Классы: 8,9

Центр окружности радиуса 6, касающейся сторон AB, BC и CD равнобедренной трапеции ABCD, лежит на её большем основании AD. Основание BC равно 4. Найдите расстояние между точками, в которых окружность касается боковых сторон AB и CD этой трапеции.

Прислать комментарий     Решение

Задача 53182

Темы:   [ Равнобедренные, вписанные и описанные трапеции ]
[ Вспомогательные подобные треугольники ]
Сложность: 4-
Классы: 8,9

Окружность радиуса 4 вписана в равнобедренную трапецию, меньшее основание которой равно 4.
Найдите расстояние между точками, в которых окружность касается боковых сторон трапеции.

Прислать комментарий     Решение

Задача 64766

Темы:   [ Равнобедренные, вписанные и описанные трапеции ]
[ Центральная симметрия (прочее) ]
[ Симметрия помогает решить задачу ]
[ Ортогональная (прямоугольная) проекция ]
Сложность: 4-
Классы: 8,9,10

Трапеция ABCD с основаниями AB и CD вписана в окружность Ω. Окружность ω проходит через точки C, D и пересекает отрезки CA, CB в точках A1, B1 соответственно. Точки A2 и B2 симметричны точкам A1 и B1 относительно середин отрезков CA и CB соответственно. Докажите, что точки A, B, A2 и B2 лежат на одной окружности.

Прислать комментарий     Решение

Задача 65017

Темы:   [ Равнобедренные, вписанные и описанные трапеции ]
[ Три точки, лежащие на одной прямой ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Признаки подобия ]
[ Теорема Птолемея ]
[ Величина угла между двумя хордами и двумя секущими ]
[ Четыре точки, лежащие на одной окружности ]
[ Хорды и секущие (прочее) ]
Сложность: 4-
Классы: 9,10,11

Автор: Нилов Ф.

В угол с вершиной A вписана окружность, касающаяся сторон угла в точках B и C. Прямая, проходящая через A, пересекает окружность в точках D и E. Хорда BX параллельна прямой DE. Докажите, что отрезок XC проходит через середину отрезка DE.

Прислать комментарий     Решение

Страница: << 23 24 25 26 27 28 29 >> [Всего задач: 293]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .