ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]() |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи
Около треугольника ABC описана окружность. Пусть AD и BE —
параллельные хорды. Известно, что отрезки BC и AD пересекаются,
![]() ![]() Трапеция ABCD с основаниями BC = 2 и AD = 10 такова, что в неё можно вписать окружность и около неё можно описать окружность. Определите, где находится центр описанной окружности, т.е. расположен он внутри или вне её, или же на одной из сторон трапеции ABCD. Найдите также отношение радиусов описанной и вписанной окружностей.
![]() ![]() ![]() Трапеция ABCD с основаниями BC = 1 и AD = 3 такова, что в неё можно вписать окружность и вокруг неё можно описать окружность. Определите, где находится центр описанной вокруг трапеции ABCD окружности, т.е. расположен ли он внутри, или вне, или же на одной из сторон трапеции ABCD. Найдите также площадь описанного круга.
![]() ![]() |
Страница: << 23 24 25 26 27 28 29 >> [Всего задач: 293]
Дана равнобедренная трапеция, в которую вписана окружность и
около которой описана окружность. Отношение длины описанной
окружности к длине вписанной окружности равно 2
Центр окружности радиуса 6, касающейся сторон AB, BC и CD равнобедренной трапеции ABCD, лежит на её большем основании AD. Основание BC равно 4. Найдите расстояние между точками, в которых окружность касается боковых сторон AB и CD этой трапеции.
Окружность радиуса 4 вписана в равнобедренную трапецию, меньшее основание которой равно 4.
Трапеция ABCD с основаниями AB и CD вписана в окружность Ω. Окружность ω проходит через точки C, D и пересекает отрезки CA, CB в точках A1, B1 соответственно. Точки A2 и B2 симметричны точкам A1 и B1 относительно середин отрезков CA и CB соответственно. Докажите, что точки A, B, A2 и B2 лежат на одной окружности.
В угол с вершиной A вписана окружность, касающаяся сторон угла в точках B и C. Прямая, проходящая через A, пересекает окружность в точках D и E. Хорда BX параллельна прямой DE. Докажите, что отрезок XC проходит через середину отрезка DE.
Страница: << 23 24 25 26 27 28 29 >> [Всего задач: 293] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |