ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Материалы по этой теме:
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Страница: << 31 32 33 34 35 36 37 >> [Всего задач: 404]
Четырёхугольник ABCD вписан в окружность. Длины противоположных сторон AB и CD соответственно равны 9 и 4, AC = 7, BD = 8. Найдите площадь четырёхугольника ABCD.
В окружности радиуса 4 см с центром в точке O проведены два диаметра AB и CD так, что угол AOC = . Из точки M, лежащей на окружности и отличной от точек A, B, C и D, проведены к диаметрам AB и CD перпендикуляры MQ и MP соответственно (точка Q лежит на AB, а точка P на CD) так, что MPQ = . Найдите площадь треугольника MPQ.
В окружности с центром в точке O проведены два диаметра AB и CD так, что угол AOC = . Из точки M, лежащей на окружности и отличной от точек A, B, C и D, проведены к диаметрам AB и CD перпендикуляры MQ и MP соответственно (точка Q лежит на AB, а точка P на CD) так, что MPQ = . Найдите отношение площади треугольника MPQ к площади круга.
Центр окружности, касающейся стороны BC треугольника ABC в точке B и проходящей через точку A, лежит на отрезке AC. Найдите площадь треугольника ABC, если известно, что BC = 6 и AC = 9.
Из точки A, находящейся на расстоянии 5 от центра окружности радиуса 3, проведены две секущие AKC и ALB, угол между которыми равен 30o (K, C, L, B — точки пересечения секущих с окружностью). Найдите площадь треугольника AKL, если площадь треугольника ABC равна 10.
Страница: << 31 32 33 34 35 36 37 >> [Всего задач: 404] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|