ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 29 30 31 32 33 34 35 >> [Всего задач: 404]      



Задача 53514

Темы:   [ Удвоение медианы ]
[ Площадь треугольника (через высоту и основание) ]
Сложность: 3+
Классы: 8,9

Найдите площадь треугольника, если две его стороны равны 1 и $ \sqrt{15}$, а медиана, проведённая к третьей, равна 2.

Прислать комментарий     Решение


Задача 54285

Темы:   [ Вспомогательная площадь. Площадь помогает решить задачу ]
[ Формула Герона ]
Сложность: 3+
Классы: 8,9

Расстояния от точки M, лежащей внутри треугольника ABC, до его сторон AC и BC соответственно равны 2 и 4. Найдите расстояние от точки M до прямой AB, если AB = 10, BC = 17, AC = 21.

Прислать комментарий     Решение


Задача 54488

Темы:   [ Вспомогательная площадь. Площадь помогает решить задачу ]
[ Формула Герона ]
Сложность: 3+
Классы: 8,9

Стороны треугольника равны 13, 14 и 15. Найдите радиус окружности, которая имеет центр на средней стороне и касается двух других сторон.

Прислать комментарий     Решение


Задача 55191

Темы:   [ Неравенства с площадями ]
[ Площадь треугольника (через две стороны и угол между ними) ]
Сложность: 3+
Классы: 8,9

Площадь треугольника равна 1. Докажите, что средняя по длине его сторона не меньше $ \sqrt{2}$.

Прислать комментарий     Решение


Задача 55273

Темы:   [ Теорема синусов ]
[ Площадь треугольника (через две стороны и угол между ними) ]
Сложность: 3+
Классы: 8,9

Докажите справедливость следующих формул для площади треугольника:

S = $\displaystyle {\frac{a^{2}\sin \beta \sin \gamma}{2\sin \alpha}}$,

S = 2R2sin$\displaystyle \alpha$sin$\displaystyle \beta$sin$\displaystyle \gamma$,

где $ \alpha$, $ \beta$, $ \gamma$ — углы треугольника, a — сторона, лежащая против угла $ \alpha$, R — радиус описанной окружности.

Прислать комментарий     Решение


Страница: << 29 30 31 32 33 34 35 >> [Всего задач: 404]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .