ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Император пригласил на праздник 2015 волшебников, некоторые из которых добрые, а остальные злые. Добрый волшебник всегда говорит правду, а злой может говорить что угодно. При этом волшебники знают, кто добрый и кто злой, а император нет. На празднике император задаёт каждому волшебнику (в каком хочет порядке) по вопросу, на которые можно ответить "да" или "нет". Опросив всех волшебников, император изгоняет одного. Изгнанный волшебник выходит в заколдованную дверь, и император узнаёт, добрый он был или злой. Затем император вновь задает каждому из оставшихся волшебников по вопросу, вновь одного изгоняет, и так далее, пока император не решит остановиться (он может это сделать после любого вопроса). Докажите, что император может изгнать всех злых волшебников, удалив при этом не более одного доброго.

   Решение

Задачи

Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 129]      



Задача 115278

Темы:   [ Равнобедренные, вписанные и описанные трапеции ]
[ Площадь трапеции ]
[ Площадь параллелограмма ]
Сложность: 3
Классы: 8,9

Ромб и равнобокая трапеция описаны около одной и той же окружности и имеют одинаковые площади. Найдите их острые углы.
Прислать комментарий     Решение


Задача 116026

Темы:   [ Равнобедренные, вписанные и описанные трапеции ]
[ Площадь трапеции ]
[ Перегруппировка площадей ]
[ Симметрия помогает решить задачу ]
Сложность: 3
Классы: 8,9

Равнобедренная трапеция описана около окружности. Докажите, что биссектриса тупого угла этой трапеции делит её площадь пополам.

Прислать комментарий     Решение

Задача 54311

Темы:   [ Средняя линия трапеции ]
[ Площадь трапеции ]
Сложность: 3
Классы: 8,9

Средняя линия трапеции равна 10 и делит площадь трапеции в отношении 3:5. Найдите основания трапеции.

Прислать комментарий     Решение


Задача 54319

Темы:   [ Тригонометрические соотношения в прямоугольном треугольнике ]
[ Площадь трапеции ]
Сложность: 3
Классы: 8,9

В выпуклом четырёхугольнике MNLQ углы при вершинах N и L — прямые, а угол при вершине M равен arctg3. Найдите площадь четырёхугольника, если известно, что сторона NL вдвое больше стороны LQ и на 5 больше стороны NM.

Прислать комментарий     Решение


Задача 52660

Темы:   [ Равнобедренные, вписанные и описанные трапеции ]
[ Площадь трапеции ]
[ Средние пропорциональные в прямоугольном треугольнике ]
Сложность: 3
Классы: 8,9

Около окружности описана равнобедренная трапеция с боковой стороной l. Одно из оснований трапеции равно a. Найдите площадь трапеции.

Прислать комментарий     Решение


Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 129]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .