Страница:
<< 12 13 14 15
16 17 18 >> [Всего задач: 1024]
Вписанная окружность треугольника
ABC касается
стороны
BC в точке
K, а вневписанная — в точке
L. Докажите,
что
CK =
BL = (
a +
b -
c)/2, где
a,
b,
c — длины сторон треугольника.
На основании
AB равнобедренного треугольника
ABC
взята точка
E, и в треугольники
ACE и
ECB вписаны
окружности, касающиеся отрезка
CE в точках
M и
N. Найдите
длину отрезка
MN, если известны длины отрезков
AE и
BE.
Три окружности
S1,
S2 и
S3 попарно касаются друг
друга в трех различных точках. Докажите, что прямые,
соединяющие точку касания окружностей
S1 и
S2 с двумя
другими точками касания, пересекают окружность
S3 в точках,
являющихся концами ее диаметра.
Две касающиеся окружности с центрами
O1
и
O2 касаются внутренним образом окружности радиуса
R
с центром
O. Найдите периметр треугольника
OO1O2.
Окружности
S1 и
S2 касаются окружности
S
внутренним образом в точках
A и
B, причем одна из точек
пересечения окружностей
S1 и
S2 лежит на отрезке
AB.
Докажите, что сумма радиусов окружностей
S1 и
S2 равна
радиусу окружности
S.
Страница:
<< 12 13 14 15
16 17 18 >> [Всего задач: 1024]