Страница:
<< 5 6 7 8
9 10 11 >> [Всего задач: 79]
Найдите трилинейные координаты точек Брокара.
|
|
Сложность: 5 Классы: 9,10,11
|
Какое множество точек заполняют центры тяжести треугольников, три вершины которых лежат соответственно на трёх сторонах
АВ,
ВС и АС данного
треугольника АВС?
|
|
Сложность: 5+ Классы: 9,10
|
Найдите уравнение описанной окружности треугольника
A1A2A3
в барицентрических координатах.
|
|
Сложность: 5+ Классы: 9,10,11
|
Дан треугольник
A0B0C0. На его сторонах
A0B0,
B0C0,
C0A0 взяты
точки
C1,
A1,
B1 соответственно. На сторонах
A1B1,
B1C1,
C1A1 треугольника
A1B1C1 взяты соответственно точки
C2,
A2,
B2, и вообще, на сторонах
AnBn,
BnCn,
CnAn, треугольника
AnBnCn взяты точки
Cn + 1,
An + 1,
Bn + 1. Известно, что
и вообще,
Доказать, что треугольник
ABC, образованный пересечением прямых
A0A1,
B0B1,
C0C1, содержится в треугольнике
AnBnCn при любом
n.
На прямых $BC$, $CA$, $AB$ взяты точки $A_1$ и $A_2$, $B_1$ и $B_2$,
$C_1$ и $C_2$ так, что $A_1B_2\| AB$, $B_1C_2\| BC$, $C_1A_2\| CA$. Пусть
$\ell_a$ — прямая, соединяющая точки пересечения прямых $BB_1$ и $CC_2$,
$BB_2$ и $CC_1$; прямые $\ell_b$ и $\ell_c$ определяются аналогично. Докажите, что
прямые $\ell_a$, $\ell_b$ и $\ell_c$ пересекаются в одной точке (или параллельны).
Страница:
<< 5 6 7 8
9 10 11 >> [Всего задач: 79]