ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 101 102 103 104 105 106 107 >> [Всего задач: 606]      



Задача 60622

Темы:   [ Числа Фибоначчи ]
[ Цепные (непрерывные) дроби ]
[ Алгоритм Евклида ]
Сложность: 4-
Классы: 9,10,11

Докажите, что при  k ≥ 1  выполняется равенство:   = [aFk; aFk–1, ..., aF0],   где {Fk} – последовательность чисел Фибоначчи.

Прислать комментарий     Решение

Задача 60750

Темы:   [ Простые числа и их свойства ]
[ Малая теорема Ферма ]
[ Арифметика остатков (прочее) ]
[ Признаки делимости на 3 и 9 ]
Сложность: 4-
Классы: 9,10,11

Докажите, что при любом простом  p     делится на p.

Прислать комментарий     Решение

Задача 60752

Темы:   [ Простые числа и их свойства ]
[ Малая теорема Ферма ]
[ Арифметика остатков (прочее) ]
Сложность: 4-
Классы: 8,9,10

Докажите, что если  x² + 1  (x – целое) делится на нечётное простое p, то  p = 4k + 1.

Прислать комментарий     Решение

Задача 60821

Темы:   [ Китайская теорема об остатках ]
[ Малая теорема Ферма ]
[ Теорема Эйлера ]
Сложность: 4-
Классы: 9,10,11

Найдите остатки от деления:  а) 1910 на 6;   б) 1914 на 70;   в) 179 на 48;   г) 141414 на 100.

Прислать комментарий     Решение

Задача 60852

 [Метод спуска]
Темы:   [ Уравнения в целых числах ]
[ Метод спуска ]
[ Арифметика остатков (прочее) ]
[ Принцип крайнего (прочее) ]
[ Доказательство от противного ]
Сложность: 4-
Классы: 8,9,10

Докажите, что уравнения
  а)  8x4 + 4y4 + 2z4 = t4;
  б)  x² + y² + z² = 2xyz;
  в)  x² + y² + z² + u² = 2xyzu;
  г)  3n = x² + y²
не имеют решений в натуральных числах.

Прислать комментарий     Решение

Страница: << 101 102 103 104 105 106 107 >> [Всего задач: 606]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .