ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 166 167 168 169 170 171 172 >> [Всего задач: 12601]      



Задача 64423

Тема:   [ Вписанные четырехугольники (прочее) ]
Сложность: 3
Классы: 8,9,10,11

В треугольнике АВС угол С равен 135°. На стороне АВ вне треугольника построен квадрат с центром О. Найдите ОС, если  АВ = 6.

Прислать комментарий     Решение

Задача 64480

Темы:   [ Диаметр, основные свойства ]
[ Аналитический метод в геометрии ]
Сложность: 3
Классы: 9,10,11

Окружность пересекает оси координат в точках  А(a, 0),  B(b, 0)  C(0, c)  и  D(0, d).  Найдите координаты её центра.

Прислать комментарий     Решение

Задача 64484

Тема:   [ Комбинаторная геометрия (прочее) ]
Сложность: 3
Классы: 9,10,11

Может ли объединение двух треугольников оказаться 13-угольником?

Прислать комментарий     Решение

Задача 64495

Тема:   [ Разрезания на части, обладающие специальными свойствами ]
Сложность: 3
Классы: 5,6

Федя из трёх равных треугольников составил несколько различных фигур (одна из них изображена на рисунке слева). Затем из всех имеющихся фигур он сложил "стрелку" так, как показано на рисунке справа. Нарисуйте отдельно каждую из Фединых фигур и покажите, как из них можно сложить "стрелку".

Прислать комментарий     Решение

Задача 64501

Темы:   [ Прямоугольники и квадраты. Признаки и свойства ]
[ Текстовые задачи (прочее) ]
Сложность: 3
Классы: 5,6,7

Из четырёх фотографий можно составить три различных прямоугольника (см. рис.). Периметр какого-то одного из них равен 56 см. Найдите периметры остальных двух прямоугольников, если периметр фотографии равен 20 см.

                       

Прислать комментарий     Решение

Страница: << 166 167 168 169 170 171 172 >> [Всего задач: 12601]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .