ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 3 задачи
Версия для печати
Убрать все задачи

На поверхности прямоугольного параллелепипеда { (x, y, z) | 0 ≤ x ≤ L, 0 ≤ y ≤ W, 0 ≤ z ≤ H } отмечены две точки с координатами (x1, y1, z1) и (x2, y2, z2). Существует много путей, проходящих по поверхности параллелепипеда и соединяющих заданные точки. Требуется найти квадрат длины кратчайшего из таких путей.

Входные данные

Файл входных данных содержит (в указанном порядке) следующие 9 целых чисел: L, W, H, x1, y1, z1, x2, y2, z2 . Числа разделяются пробелами и/или символами перевода строки. Каждое из чисел L, W, H не превышает 100.

Выходные данные

Вывести в выходной файл одно целое число – квадрат длины искомого пути.

Пример входного файла

3 4 4
1 2 4
3 2 1

Пример выходного файла

25

Вниз   Решение


Два многоугольника на плоскости заданы координатами своих вершин. Требуется вычислить площадь пересечения этих многоугольников, то есть сумму площадей тех кусков, которые образуются при их пересечении и принадлежат каждому из них. При этом вы можете предполагать, что: 
    А) Многоугольники выпуклые, а координаты их вершин даны в произвольном порядке.
    Б) Хотя бы один из многоугольников невыпуклый, но известно, что у каждого из многоугольников не более одного угла, большего 180 градусов, а координаты вершин даны в порядке обхода по часовой стрелке.
Ваша программа по входным данным должна сама определить, какой из этих двух случаев имеет место.

Входные данные

Первая строка входного файла содержит целое число N – количество вершин в первом многоугольнике (3 ≤ N ≤ 50). Во второй строке записаны координаты этих вершин. Третья и четвертая строки таким же образом задают второй многоугольник. Координаты всех вершин являются целыми числами из диапазона [-32768, 32767].

Выходные данные

Выведите в выходной файл искомую площадь не менее чем с 6 верными значащими цифрами.

Пример входного файла

3
0 3 0 -3 -3 0
5
-1 1 2 1 1 0 2 -1 -1 -1

Пример выходного файла

2.0

ВверхВниз   Решение


Какое минимальное количество спичек необходимо для того, чтобы выложить на плоскости N квадратов со стороной в одну спичку? Спички нельзя ломать и класть друг на друга. Вершинами квадратов должны быть точки, где сходятся концы спичек, а сторонами - сами спички.

Задание

Напишите программу MATCHES, которая по количеству квадратов N, которые необходимо составить, находит минимальное необходимое для этого количество спичек.

Входные данные

Единственная строка входного файла MATCHES.DAT содержит одно целое число N (1≤N≤109).

Выходные данные

Единственная строка выходного файла MATCHES.SOL должна содержать одно целое число - минимальное количество спичек требуемых для составления заданного количества квадратов.

Пример входных и выходных данных

MATCHES.DAT

MATCHES.SOL

4

12

Вверх   Решение

Задачи

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 108]      



Задача 111263

Темы:   [ Конус ]
[ Правильная пирамида ]
[ Теорема косинусов ]
[ Тригонометрические соотношения в прямоугольном треугольнике ]
Сложность: 4-
Классы: 10,11

Найдите угол при вершине осевого сечения прямого кругового конуса, если известно, что существуют три образующие боковой поверхности конуса, попарно перпендикулярные друг другу.
Прислать комментарий     Решение


Задача 67141

Темы:   [ Конус (прочее) ]
[ Площадь сечения ]
[ Площадь треугольника (прочее) ]
[ Экстремальные свойства треугольника (прочее) ]
Сложность: 4
Классы: 10,11

Автор: Фольклор

У прямого кругового конуса длина образующей равна 5, а диаметр равен 8.

Найдите наибольшую площадь треугольного сечения, которая может получиться при пересечении конуса плоскостью.
Прислать комментарий     Решение


Задача 87139

Темы:   [ Конус ]
[ Шар и его части ]
Сложность: 4
Классы: 10,11

Три конуса радиусы основания которых равны R и составляют высоты, расположены по одну сторону от плоскости α , а их основания лежат в этой плоскости. Окружности оснований каждых двух из этих конусов касаются. Найдите радиус шара, лежащего между конусами и касающегося как плоскости α , так и всех трёх конусов
Прислать комментарий     Решение


Задача 87141

Темы:   [ Конус ]
[ Правильная пирамида ]
Сложность: 4
Классы: 8,9

В правильной пирамиде PABC сторона основания ABC равна a , боковое ребро – 2a . Точки P , B и C лежат на боковой поверхности конуса, имеющего вершину в точке A . Найдите угол при вершине осевого сечения конуса.
Прислать комментарий     Решение


Задача 87144

Темы:   [ Конус ]
[ Правильная призма ]
Сложность: 4
Классы: 8,9

Вершина A правильной призмы ABCA1B1C1 совпадает с вершиной конуса, вершины B и C лежат на боковой поверхности конуса, а вершины B1 и C1 – на окружности его основания. Найдите отношение объёмов конуса и призмы, если AB1:AB = 5:1 .
Прислать комментарий     Решение


Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 108]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .