Страница:
<< 1 2 3
4 5 6 7 >> [Всего задач: 147]
|
|
Сложность: 3+ Классы: 9,10,11
|
При каких натуральных a и b число logab
будет рациональным?
|
|
Сложность: 3+ Классы: 8,9,10
|
Число x таково, что среди четырёх чисел ровно одно не является целым.
Найдите все такие x.
|
|
Сложность: 3+ Классы: 10,11
|
Числа x, y и z таковы, что все три числа x + yz, y + zx и z + xy рациональны, а x² + y² = 1. Докажите, что число xyz² также рационально.
|
|
Сложность: 3+ Классы: 7,8,9
|
Известно, что а > 1. Обязательно ли имеет место равенство =
?
|
|
Сложность: 3+ Классы: 9,10,11
|
Найдутся ли такие функции p(x) и q(x), что p(x) – чётная функция, а p(q(x)) – нечётная функция (отличная от тождественно нулевой)?
Страница:
<< 1 2 3
4 5 6 7 >> [Всего задач: 147]