ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Пусть ABCD – выпуклый четырёхугольник, M и N – середины его сторон AD и BC соответственно. Точки A , B , M и N лежат на одной окружности, прямая AB касается описанной окружности треугольника BMC . Докажите, что она также касается описанной окружности треугольника AND . ![]() |
Страница: << 33 34 35 36 37 38 39 >> [Всего задач: 374]
На окружности даны точки A, B, C, D в указанном порядке; M — середина дуги AB. Обозначим точки пересечения хорд MC и MD с хордой AB через E и K. Докажите, что KECD — вписанный четырёхугольник.
Медианы AM и BE треугольника ABC пересекаются в точке O. Точки O, M, E, C лежат на одной окружности. Найдите AB, если BE = AM = 3.
В треугольнике ABC биссектрисы BP и CT пересекаются в точке O. Известно, что точки A, P, O и T лежат на одной окружности. Найдите угол A.
Рассмотрим четыре сегмента, отсекаемых от окружности вписанным в неё четырёхугольником и расположенных вне этого четырёхугольника. Найдите сумму углов, вписанных в эти сегменты.
Равносторонние треугольники ABC и PQR расположены так, что вершина C лежит на стороне PQ, а вершина R — на стороне AB. Докажите, что AP || BQ.
Страница: << 33 34 35 36 37 38 39 >> [Всего задач: 374] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |