ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 35 36 37 38 39 40 41 >> [Всего задач: 372]      



Задача 98593

Темы:   [ Ортоцентр и ортотреугольник ]
[ Вписанные четырехугольники (прочее) ]
[ Вписанные и описанные окружности ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 4-
Классы: 8,9

Внутри треугольника ABC взята точка P так, что  ∠ABP = ∠ACP,  а  ∠CBP = ∠CAP. Докажите, что P – точка пересечения высот треугольника ABC.

Прислать комментарий     Решение

Задача 115771

Темы:   [ Пересекающиеся окружности ]
[ Вписанные четырехугольники (прочее) ]
[ Симметрия помогает решить задачу ]
Сложность: 4-
Классы: 8,9,10,11

Три окружности проходят через точку P, а вторые точки их пересечения A, B, C лежат на одной прямой. A1, B1, C1 – вторые точки пересечения прямых AP, BP, CP с соответствующими окружностями. C2 – точка пересечения прямых AB1 и BA1.  A2, B2 определяются аналогично.
Докажите, что треугольники A1B1C1 и A2B2C2 равны.

Прислать комментарий     Решение

Задача 115901

Темы:   [ Системы точек и отрезков. Примеры и контрпримеры ]
[ Вписанные четырехугольники (прочее) ]
[ Комбинаторная геометрия (прочее) ]
Сложность: 4-
Классы: 8,9,10,11

На окружности отметили n точек. Оказалось, что среди треугольников с вершинами в этих точках ровно половина остроугольных.
Найдите все значения n, при которых это возможно.

Прислать комментарий     Решение

Задача 66687

Темы:   [ Вписанные и описанные окружности ]
[ Вписанные четырехугольники (прочее) ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Вспомогательные подобные треугольники ]
[ Произведение длин отрезков хорд и длин отрезков секущих ]
Сложность: 4
Классы: 8,9,10,11

В окружности $\omega$, описанной около треугольника $ABC$, хорда $KL$ проходит через середину $M$ отрезка $AB$ и перпендикулярна ей. Некоторая окружность проходит через точки $L$ и $M$ и пересекает отрезок $CK$ в точках $P$ и $Q$ ($Q$ лежит на отрезке $KP$). Пусть $LQ$ пересекает описанную окружность треугольника $KMQ$ в точке $R$. Докажите, что четырехугольник $APBR$ вписанный.
Прислать комментарий     Решение


Задача 64610

Темы:   [ Четырехугольник: вычисления, метрические соотношения. ]
[ Вписанные четырехугольники (прочее) ]
[ Углы между биссектрисами ]
[ Вписанный угол равен половине центрального ]
[ Теорема синусов ]
Сложность: 4
Классы: 8,9

В выпуклом четырёхугольнике ABCD нет параллельных сторон. Углы, образованные сторонами четырёхугольника с диагональю AC, равны (в каком-то порядке) 16°, 19°, 55° и 55°. Каким может быть острый угол между диагоналями AC и BD?

Прислать комментарий     Решение

Страница: << 35 36 37 38 39 40 41 >> [Всего задач: 372]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .