ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 21 22 23 24 25 26 27 >> [Всего задач: 375]      



Задача 66320

Темы:   [ Вписанные четырехугольники (прочее) ]
[ Описанные четырехугольники ]
[ Пересекающиеся окружности ]
[ Инверсия помогает решить задачу ]
[ Проективная геометрия (прочее) ]
Сложность: 4+
Классы: 10,11

Четырёхугольник ABCD описан около окружности с центром I и вписан в окружность Ω. Прямые AB и CD пересекаются в точке P, а прямые BC и AD пересекаются в точке Q. Докажите, что описанная окружность ω треугольника PIQ перпендикулярна Ω.

Прислать комментарий     Решение

Задача 111714

Темы:   [ Вписанные четырехугольники (прочее) ]
[ Теорема синусов ]
[ Свойства симметрий и осей симметрии ]
[ Вспомогательные подобные треугольники ]
[ Теорема Птолемея ]
Сложность: 4+
Классы: 9,10

Прямые, симметричные диагонали BD четырёхугольника ABCD относительно биссектрис углов B и D, проходят через середину диагонали AC.
Докажите, что прямые, симметричные диагонали AC относительно биссектрис углов A и C, проходят через середину диагонали BD.

Прислать комментарий     Решение

Задача 115402

Темы:   [ Вписанные четырехугольники (прочее) ]
[ Вписанные и описанные окружности ]
[ Вспомогательная окружность ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 5-
Классы: 9,10,11

На сторонах AB и BC параллелограмма ABCD выбраны точки A1 и C1 соответственно. Отрезки AC1 и CA1 пересекаются в точке P . Описанные окружности треугольников  AA1P и CC1P вторично пересекаются в точке Q , лежащей внутри треугольника  ACD . Докажите, что PDA= QBA .
Прислать комментарий     Решение


Задача 64354

Темы:   [ Вписанные четырехугольники (прочее) ]
[ Вписанные и описанные окружности ]
[ Угол между касательной и хордой ]
[ Теорема о длинах касательной и секущей; произведение всей секущей на ее внешнюю часть ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Симметрия помогает решить задачу ]
[ Радикальная ось ]
Сложность: 5-
Классы: 9,10,11

Автор: Пастор А.

Внутри вписанного четырёхугольника ABCD отмечены такие точки P и Q, что  ∠PDC + ∠PCB = ∠PAB + ∠PBC = ∠QCD + ∠QDA = ∠QBA + ∠QAD = 90°.
Докажите, что прямая PQ образует равные углы с прямыми AD и BC.

Прислать комментарий     Решение

Задача 64977

Темы:   [ Вписанные четырехугольники (прочее) ]
[ Биссектриса угла (ГМТ) ]
[ Сумма углов треугольника. Теорема о внешнем угле. ]
[ Центральная симметрия помогает решить задачу ]
Сложность: 5-
Классы: 9,10,11

Четырёхугольник ABCD вписан в окружность с центром O. Биссектрисы его углов образуют четырёхугольник, вписанный в окружность с центром I, а биссектрисы внешних углов – четырёхугольник, вписанный в окружность с центром J. Докажите, что O – середина отрезка IJ.

Прислать комментарий     Решение

Страница: << 21 22 23 24 25 26 27 >> [Всего задач: 375]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .