Страница:
<< 18 19 20 21
22 23 24 >> [Всего задач: 375]
|
|
Сложность: 4 Классы: 9,10,11
|
Дан треугольник ABC. Окружность ω касается описанной окружности Ω треугольника ABC в точке A, пересекает сторону AB в точке K, а также пересекает сторону BC. Касательная CL к окружности ω такова, что отрезок KL пересекает сторону BC в точке T. Докажите, что отрезок BT равен по длине касательной, проведённой из точки B к ω.
На сторонах AB, BC, CA треугольника ABC выбраны точки P,
Q, R соответственно таким образом, что AP = CQ и четырёхугольник RPBQ– вписанный. Касательные к описанной окружности
треугольника ABC в точках A и C пересекают прямые RP и
RQ в точках X и Y соответственно. Докажите, что RX = RY.
|
|
Сложность: 4 Классы: 8,9,10,11
|
Дан вписанный четырёхугольник ABCD. Известно, что четыре окружности, каждая из которых касается его диагоналей и описанной окружности изнутри,
равны. Верно ли, что ABCD – квадрат?
|
|
Сложность: 4 Классы: 9,10,11
|
Четырёхугольник ABCD вписан в окружность. Биссектрисы углов В и С пересекаются в точке, лежащей на отрезке AD.
Найдите AD, если АВ = 5, СD = 3.
|
|
Сложность: 4 Классы: 8,9,10
|
В выпуклом четырёхугольнике ABCD: ∠ВАС = 20°, ∠ВСА = 35°, ∠ВDС = 40°, ∠ВDА = 70°.
Найдите угол между диагоналями четырёхугольника.
Страница:
<< 18 19 20 21
22 23 24 >> [Всего задач: 375]