Страница:
<< 14 15 16 17
18 19 20 >> [Всего задач: 367]
|
|
Сложность: 3+ Классы: 9,10,11
|
Каждый день, с понедельника по пятницу, ходил старик к синему морю и закидывал в море невод. При этом каждый день в невод попадалось не больше рыбы, чем в предыдущий. Всего за пять дней старик поймал ровно 100 рыбок. Какое наименьшее суммарное количество рыбок он мог поймать за три дня – понедельник, среду и пятницу?
По кругу выписаны числа 1, 2, 3, ..., 10 в некотором порядке. Петя вычислил 10 сумм всех троек соседних чисел и написал на доске наименьшее из вычисленных чисел. Какое наибольшее число могло быть написано на доске?
|
|
Сложность: 3+ Классы: 7,8,9
|
В ящике лежат 111 шариков: красные, синие, зелёные и белые. Известно, что если, не заглядывая в ящик, вытащить 100 шариков, то среди них обязательно найдутся четыре шарика различных цветов. Какое наименьшее число шариков нужно вытащить, не заглядывая в ящик, чтобы среди них наверняка нашлись три шарика различных цветов?
|
|
Сложность: 3+ Классы: 8,9,10,11
|
В ящике лежат 100 шариков: белые, синие и красные. Известно, что если, не заглядывая в ящик, вытащить 26 шариков, то среди них обязательно найдутся 10 шариков одного цвета. Какое наименьшее число шариков нужно вытащить, не заглядывая в ящик, чтобы среди них наверняка нашлись 30 шариков одного цвета?
|
|
Сложность: 3+ Классы: 7,8,9
|
В некотором классе при любой раздаче 200 конфет найдутся хотя бы двое школьников, получившие одинаковое количество конфет (возможно, и ни одной). Каково наименьшее количество учеников в таком классе?
Страница:
<< 14 15 16 17
18 19 20 >> [Всего задач: 367]