ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Можно ли испечь такой торт, который может быть разделён одним прямолинейным разрезом на 4 части? ![]() ![]() Вершины выпуклого многоугольника раскрашены в три цвета так, что каждый цвет присутствует и никакие две соседние вершины не окрашены в один цвет. Докажите, что многоугольник можно разбить диагоналями на треугольники так, чтобы у каждого треугольника вершины были трёх разных цветов. ![]() ![]() |
Страница: << 13 14 15 16 17 18 19 >> [Всего задач: 107]
Стрелок стреляет по трём мишеням до тех пор, пока не собьёт все. Вероятность попадания при одном выстреле равна p.
На соревнования приехали 10 теннисисток, из них 4 из России. По правилам для проведения первого тура теннисистки разбиваются на пары случайным образом. Найдите вероятность того, что в первом туре все россиянки будут играть только с россиянками.
На заводе имени матроса Железняка изготавливают прямоугольники длиной 2 м и шириной 1 м. Длину отмеряет рабочий Иванов, а ширину, независимо от Иванова, отмеряет рабочий Петров. Средняя ошибка у обоих нулевая, но Иванов допускает стандартную ошибку измерения (стандартное отклонение длины) 3 мм, а Петров допускает стандартную ошибку 2 мм.
В выпуклом многоугольнике, в котором нечётное число вершин, равное 2n + 1, выбирают независимо друг от друга две случайные диагонали.
Высокий прямоугольник ширины 2 открыт сверху, и в него падают в случайной ориентации Г-тримино (см. рисунок).
Страница: << 13 14 15 16 17 18 19 >> [Всего задач: 107] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |