ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

Сфера проходит через точки A , B , C , D и пересекает отрезки SA , SB , SC , SD в точках A1 , B1 , C1 , D1 соответственно. Известно, что SD1 = , DD1 = , отношение площадей треугольников SA1B1 и SAB равно , отношение объёмов пирамид SB1C1D1 и SBCD равно , а отношение объёмов пирамид SA1B1C1 и SABC равно . Найдите отрезки SA1 , SB1 , SC1 .

Вниз   Решение


Точки A , B , C , D , E , F лежат на сфере радиуса . Отрезки AD , BE и CF пересекаются в точке S , находящейся на расстоянии 1 от центра сферы. Объёмы пирамид SABC и SDEF относятся как 1:9, пирамид SABF и SDEC – как 4:9, пирамид SAEC и SDBF – как 9:4. Найдите отрезки SA , SB , SC .

Вверх   Решение

Задачи

Страница: << 25 26 27 28 29 30 31 >> [Всего задач: 375]      



Задача 57021

Тема:   [ Вписанные четырехугольники (прочее) ]
Сложность: 6+
Классы: 8,9

Окружности S1 и S2, S2 и S3, S3 и S4, S4 и S1 касаются внешним образом. Докажите, что четыре общие касательные (в точках касания окружностей) либо пересекаются в одной точке, либо касаются одной окружности.
Прислать комментарий     Решение


Задача 57025

Тема:   [ Вписанные четырехугольники (прочее) ]
Сложность: 6+
Классы: 8,9

Продолжения сторон четырехугольника ABCD, вписанного в окружность с центром O, пересекаются в точках P и Q, а его диагонали пересекаются в точке S.
а) Расстояния от точек P, Q и S до точки O равны p, q и s, а радиус описанной окружности равен R. Найдите длины сторон треугольника PQS.
б) Докажите, что высоты треугольника PQS пересекаются в точке O.
Прислать комментарий     Решение


Задача 110755

Темы:   [ Вписанные четырехугольники (прочее) ]
[ Свойства симметрий и осей симметрии ]
[ Биссектриса делит дугу пополам ]
[ Композиции движений. Теорема Шаля ]
[ Композиция центральных симметрий ]
[ Ортогональная (прямоугольная) проекция ]
Сложность: 7-
Классы: 9,10,11

Четырехугольник ABCD вписан в окружность с центром O . Точки C' , D' симметричны ортоцентрам треугольников ABD и ABC относительно O . Докажите, что если прямые BD и BD' симметричны относительно биссектрисы угла B , то прямые AC и AC' симметричны относительно биссектрисы угла A .
Прислать комментарий     Решение


Задача 107701

Темы:   [ Перпендикуляр короче наклонной. Неравенства для прямоугольных треугольников ]
[ Вписанные четырехугольники (прочее) ]
Сложность: 3-
Классы: 7,8,9

Из точки M внутри четырёхугольника ABCD опущены перпендикуляры на стороны. Основания перпендикуляров лежат внутри сторон. Обозначим эти основания: то, которое лежит на стороне AB — через X, лежащее на стороне BC — через Y, лежащее на стороне CD — через Z, лежащее на стороне DA — через T. Известно, что AXXB, BYYC, CZZD, DTTA. Докажите, что вокруг четырёхугольника ABCD можно описать окружность.
Прислать комментарий     Решение


Задача 115458

Темы:   [ Углы, опирающиеся на равные дуги и равные хорды ]
[ Вписанные четырехугольники (прочее) ]
[ Трапеции (прочее) ]
Сложность: 3-
Классы: 8,9

Диагонали трапеции ABCD пересекаются в точке O . Описанные окружности треугольников AOB и COD пересекаются в точке М на основании AD . Докажите, что треугольник BMC равнобедренный.
Прислать комментарий     Решение


Страница: << 25 26 27 28 29 30 31 >> [Всего задач: 375]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .