ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 27 28 29 30 31 32 33 >> [Всего задач: 374]      



Задача 116013

Темы:   [ Признаки и свойства параллелограмма ]
[ Вписанные четырехугольники (прочее) ]
[ Вписанные и описанные окружности ]
[ Ортоцентр и ортотреугольник ]
Сложность: 3
Классы: 8,9,10

Автор: Фольклор

В остроугольном треугольнике АВС угол В равен 45°, АМ и CN – высоты, О – центр описанной окружности, Н – ортоцентр.
Докажите, что ОNHМ – параллелограмм.

Прислать комментарий     Решение

Задача 52499

Темы:   [ Величина угла между двумя хордами и двумя секущими ]
[ Вписанные четырехугольники (прочее) ]
Сложность: 3
Классы: 8,9

Дан вписанный четырехугольник ABCD. Противоположные стороны AB и CD при продолжении пересекаются в точке K, стороны BC и AD - в точке L. Докажите, что биссектрисы углов BKC и BLA перпендикулярны.

Прислать комментарий     Решение


Задача 52345

Темы:   [ Теорема косинусов ]
[ Вписанные четырехугольники (прочее) ]
Сложность: 3+
Классы: 8,9

Около четырёхугольника ABCD можно описать окружность. Кроме того, AB = 3, BC = 4, CD = 5 и AD = 2. Найдите AC.

Прислать комментарий     Решение


Задача 52388

Темы:   [ Теорема косинусов ]
[ Вписанные четырехугольники (прочее) ]
Сложность: 3+
Классы: 8,9

Можно ли около четырёхугольника ABCD описать окружность, если $ \angle$ADC = 30o, AB = 3, BC = 4, AC = 6?

Прислать комментарий     Решение


Задача 54523

Темы:   [ ГМТ - окружность или дуга окружности ]
[ Вписанные четырехугольники (прочее) ]
Сложность: 3+
Классы: 8,9

С помощью циркуля и линейки постройте вписанный четырёхугольник по стороне, прилежащему к ней углу и обеим диагоналям.

Прислать комментарий     Решение


Страница: << 27 28 29 30 31 32 33 >> [Всего задач: 374]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .