Страница:
<< 13 14 15 16
17 18 19 >> [Всего задач: 122]
В треугольнике ABC проведены биссектрисы AA1
и BB1.
Докажите, что расстояние от любой точки M отрезка A1B1 до прямой AB равно сумме расстояний от M до прямых AC и BC.
Пусть AC – большая из диагоналей параллелограмма ABCD. Из точки C на продолжения сторон AB и AD опущены перпендикуляры CE и CF соответственно. Докажите, что AB·AE + AD·AF = AC².
Дан остроугольный треугольник ABC. Точки H и O – его ортоцентр и центр описанной окружности соответственно. Серединный перпендикуляр к отрезку BH пересекает стороны AB и BC в точках A1 и C1. Докажите, что OB – биссектриса угла A1OC1.
На окружности выбрано пять точек A1, A2, A3, A4, H. Обозначим через hij расстояние от точки H до прямой AiAj. Доказать, что
h12h34 = h14h23.
Из вершин произвольного выпуклого четырёхугольника опущены перпендикуляры на его диагонали.
Докажите, что четырёхугольник, вершинами которого являются основания этих перпендикуляров, подобен исходному.
Страница:
<< 13 14 15 16
17 18 19 >> [Всего задач: 122]