Страница:
<< 185 186 187 188
189 190 191 >> [Всего задач: 1111]
|
|
Сложность: 3+ Классы: 7,8,9
|
Дана ладья, которой разрешается делать ходы только длиной в одну клетку. Доказать, что она может обойти все клетки прямоугольной шахматной доски, побывав на каждой клетке ровно один раз, и вернуться в начальную клетку тогда и только тогда, когда число клеток на доске чётно.
|
|
Сложность: 3+ Классы: 9,10
|
В клетках шахматной доски размером n×n расставлены числа: на
пересечении k-й строки и m-го столбца стоит число akm. При любой расстановке на этой доске n ладей, при которой никакие две из них не бьют друг друга, сумма закрытых чисел равна 1972. Доказать, что существует два таких набора чисел x1, x2, ..., xn и y1, ..., yn, что при всех k и m выполняется равенство
akm = xk + ym.
Жюри олимпиады решило по её результатам сопоставить каждому участнику
натуральное число таким образом, чтобы по этому числу можно было однозначно
восстановить баллы, полученные участником за каждую задачу, и чтобы из каждых
двух школьников большее число сопоставлялось тому, кто набрал большую сумму
баллов. Помогите жюри решить эту задачу!
В квадратной таблице из 9×9 клеток отмечены 9 клеток, лежащие на
пересечении второй, пятой и восьмой строк со вторым, пятым и восьмым
столбцами. Сколькими путями можно из левой нижней клетки попасть в правую
верхнюю, двигаясь только по неотмеченным клеткам вверх или вправо?
|
|
Сложность: 3+ Классы: 7,8,9
|
На шахматной доске размером 8×8 отметили 17 клеток.
Докажите, что из них можно выбрать две так, что коню нужно не менее трёх ходов для попадания с одной из них на другую.
Страница:
<< 185 186 187 188
189 190 191 >> [Всего задач: 1111]