ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Ссылки по теме:
Статья "Графы" (А. Савин) Статья "Элементы теории графов" (В. Фосс) Материалы по этой теме:
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Страница: << 53 54 55 56 57 58 59 >> [Всего задач: 383]
Петя поставил на доску 50×50 несколько фишек, в каждую клетку – не больше одной. Докажите, что у Васи есть способ поставить на свободные поля этой же доски не более 99 новых фишек (возможно, ни одной) так, чтобы по-прежнему в каждой клетке стояло не больше одной фишки, и в каждой строке и каждом столбце этой доски оказалось чётное количество фишек.
В стране лингвистов существует n языков. Там живет m людей, каждый из которых знает ровно три языка, причём для разных людей эти наборы различны. Известно, что максимальное число людей, любые два из которых могут поговорить без посредников, равно k. Оказалось, что 11n ≤ k ≤ m/2.
На плоскости даны 2005 точек (никакие три из которых не лежат на одной прямой). Каждые две точки соединены отрезком. Тигр и Осёл играют в следующую игру. Осёл помечает каждый отрезок одной из цифр, а затем Тигр помечает каждую точку одной из цифр. Осёл выигрывает, если найдутся две точки, помеченные той же цифрой, что и соединяющий их отрезок, и проигрывает в противном случае. Доказать, что при правильной игре Осёл выиграет.
Хозяйка испекла для гостей пирог. За столом может оказаться либо p человек, либо q (p и q взаимно просты). На какое минимальное количество кусков (не обязательно равных) нужно заранее разрезать пирог, чтобы в любом случае его можно было раздать поровну?
Страница: << 53 54 55 56 57 58 59 >> [Всего задач: 383] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|