ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

Целое положительное число m записывается в двоичной системе счисления и разряды (в этой записи) переставляются в обратном порядке. Получившееся число принимается за значение функции B (m). Напечатать значения для m = 512, 513, 514, ... , 1023. Вот, для ясности, начало этой распечатки: 1, 513, 257, ...

Вниз   Решение


Пусть P = (p1, ... , Pn ) является перестановкой чисел 1, 2, ..., n. Таблицей инверсии перестановки P называют последовательность T = (t1, ..., tn), в которой ti равно числу элементов перестановки Р, стоящих (в Р) левее числа i и больших i. Например, для перестановки Р = ( 5, 9,1, 8, 2, 6, 4, 7, 3 ) чисел 1, ... , 2, ... , 9 таблица инверсий Т = ( 2, 3, 6, 4, 0, 2, 2, 1, 0 ). Написать программу, которая по заданной таблице инверсии восстанавливает перестановку.

Вверх   Решение

Задачи

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 108]      



Задача 111263

Темы:   [ Конус ]
[ Правильная пирамида ]
[ Теорема косинусов ]
[ Тригонометрические соотношения в прямоугольном треугольнике ]
Сложность: 4-
Классы: 10,11

Найдите угол при вершине осевого сечения прямого кругового конуса, если известно, что существуют три образующие боковой поверхности конуса, попарно перпендикулярные друг другу.
Прислать комментарий     Решение


Задача 67141

Темы:   [ Конус (прочее) ]
[ Площадь сечения ]
[ Площадь треугольника (прочее) ]
[ Экстремальные свойства треугольника (прочее) ]
Сложность: 4
Классы: 10,11

Автор: Фольклор

У прямого кругового конуса длина образующей равна 5, а диаметр равен 8.

Найдите наибольшую площадь треугольного сечения, которая может получиться при пересечении конуса плоскостью.
Прислать комментарий     Решение


Задача 87139

Темы:   [ Конус ]
[ Шар и его части ]
Сложность: 4
Классы: 10,11

Три конуса радиусы основания которых равны R и составляют высоты, расположены по одну сторону от плоскости α , а их основания лежат в этой плоскости. Окружности оснований каждых двух из этих конусов касаются. Найдите радиус шара, лежащего между конусами и касающегося как плоскости α , так и всех трёх конусов
Прислать комментарий     Решение


Задача 87141

Темы:   [ Конус ]
[ Правильная пирамида ]
Сложность: 4
Классы: 8,9

В правильной пирамиде PABC сторона основания ABC равна a , боковое ребро – 2a . Точки P , B и C лежат на боковой поверхности конуса, имеющего вершину в точке A . Найдите угол при вершине осевого сечения конуса.
Прислать комментарий     Решение


Задача 87144

Темы:   [ Конус ]
[ Правильная призма ]
Сложность: 4
Классы: 8,9

Вершина A правильной призмы ABCA1B1C1 совпадает с вершиной конуса, вершины B и C лежат на боковой поверхности конуса, а вершины B1 и C1 – на окружности его основания. Найдите отношение объёмов конуса и призмы, если AB1:AB = 5:1 .
Прислать комментарий     Решение


Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 108]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .