Страница:
<< 11 12 13 14
15 16 17 >> [Всего задач: 92]
|
|
Сложность: 3+ Классы: 8,9,10
|
Правильный треугольник ABC вписан в окружность. Прямая l, проходящая через середину стороны AB и параллельная AC, пересекает дугу AB, не содержащую C, в точке K. Докажите, что отношение AK : BK равно отношению стороны правильного пятиугольника к его диагонали.
В выпуклом пятиугольнике ABCDE диагонали BE и CE являются
биссектрисами углов при вершинах B и C соответственно, ∠A = 35°, ∠D = 145°, а площадь треугольника BCE равна 11. Найдите площадь пятиугольника ABCDE.
В выпуклом пятиугольнике ABCDE диагонали AC и AD являются
биссектрисами углов при вершинах C и D соответственно, ∠B = 25°, ∠E = 155°, а площадь пятиугольника ABCDE равна 12. Найдите площадь треугольника ACD.
В выпуклом пятиугольнике ABCDE диагонали AD и BD являются
биссектрисами углов при вершинах A и B соответственно, ∠C = 115°, ∠E = 65°, а площадь треугольника ABD равна 13. Найдите площадь пятиугольника ABCDE.
В выпуклом пятиугольнике ABCDE диагонали AC и EC являются
биссектрисами углов при вершинах A и E соответственно, ∠B = 125°, ∠D = 55°, а площадь пятиугольника ABCDE равна 14. Найдите площадь треугольника ACE.
Страница:
<< 11 12 13 14
15 16 17 >> [Всего задач: 92]