ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Ссылки по теме:
Статья Н. Виленкина "Комбинаторика"

Материалы по этой теме:


Подтемы:
Фильтр
Сложность с по   Класс с по  
Выбрано 5 задач
Версия для печати
Убрать все задачи

На клавиатуре калькулятора есть цифры от 0 до 9 и знаки двух действий (см. рисунок). Вначале на дисплее написано число 0. Можно нажимать любые клавиши. Калькулятор выполняет действия в последовательности нажатий. Если знак действия нажать подряд несколько раз, то калькулятор запомнит только последнее нажатие.
  а) Кнопка со знаком умножения сломалась и не работает. Рассеянный Учёный нажал несколько кнопок в случайной последовательности. Какой результат получившейся цепочки действий более вероятен – чётное число или нечётное?
  б) Решите предыдущую задачу, если кнопку со знаком умножения починили.

Вниз   Решение


Четырёхугольник ABCD вписан в окружность, центр O которой лежит внутри него.
Доказать, что, если  ∠BAO = ∠DAC,  то диагонали четырёхугольника перпендикулярны.

ВверхВниз   Решение


А и Б стреляют в тире, но у них есть только один шестизарядный револьвер с одним патроном. Поэтому они договорились по очереди случайным образом крутить барабан и стрелять. Начинает А. Найдите вероятность того, что выстрел произойдёт, когда револьвер будет у А.

ВверхВниз   Решение


Сколько ожерелий можно составить из пяти одинаковых красных бусинок и двух одинаковых синих бусинок?

ВверхВниз   Решение


На глобусе проведены 17 параллелей и 24 меридиана. На сколько частей разделена поверхность глобуса?

Вверх   Решение

Задачи

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 502]      



Задача 103824

Темы:   [ Правило произведения ]
[ Наглядная геометрия в пространстве ]
[ Окружности на сфере ]
Сложность: 2
Классы: 6,7,8

На глобусе проведены 17 параллелей и 24 меридиана. На сколько частей разделена поверхность глобуса?

Прислать комментарий     Решение

Задача 30341

Темы:   [ Правило произведения ]
[ Десятичная система счисления ]
Сложность: 2
Классы: 6,7

Сколько существует шестизначных чисел, все цифры которых имеют одинаковую чётность?

Прислать комментарий     Решение

Задача 30734

Тема:   [ Классическая комбинаторика (прочее) ]
Сложность: 2
Классы: 6,7

Сколько ожерелий можно составить из пяти одинаковых красных бусинок и двух одинаковых синих бусинок?

Прислать комментарий     Решение

Задача 30708

Темы:   [ Правило произведения ]
[ Теория множеств (прочее) ]
Сложность: 2+
Классы: 6,7

Человек имеет 10 друзей и в течение нескольких дней приглашает некоторых из них в гости так, что компания ни разу не повторяется (в какой-то из дней он может не приглашать никого). Сколько дней он может так делать?

Прислать комментарий     Решение

Задача 30722

Тема:   [ Сочетания и размещения ]
Сложность: 2+
Классы: 7,8

Сколькими способами можно разрезать ожерелье, состоящее из 30 различных бусин на 8 частей (резать можно только между бусинами)?

Прислать комментарий     Решение

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 502]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .