ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Найдётся ли среди чисел вида 1...1 число, которое делится на 57?

   Решение

Задачи

Страница: << 82 83 84 85 86 87 88 >> [Всего задач: 606]      



Задача 98181

Темы:   [ Последовательности (прочее) ]
[ Арифметика остатков (прочее) ]
[ Доказательство от противного ]
Сложность: 4-
Классы: 8,9,10

На доску последовательно записываются натуральные числа. На n-м шаге (когда написаны числа  a1, a2, ..., an–1)  пишется любое число, которое нельзя представить в виде суммы  a1k1 + a2k2 + ... + an–1kn–1,  где ki – целые неотрицательные числа (на a1 никаких ограничений не накладывается). Доказать, что процесс написания чисел не может быть бесконечным.

Прислать комментарий     Решение

Задача 98235

Темы:   [ Периодичность и непериодичность ]
[ Деление с остатком ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4-
Классы: 8,9

Периоды двух последовательностей – 7 и 13. Какова максимальная длина начального куска, который может у них совпадать?

Прислать комментарий     Решение

Задача 98281

Темы:   [ Простые числа и их свойства ]
[ Арифметика остатков (прочее) ]
[ Принцип Дирихле (прочее) ]
Сложность: 4-
Классы: 10,11

Существуют ли такие
  а) 4 различных натуральных числа;
  б) 5 различных натуральных чисел;
  в) 5 различных целых чисел;
  г) 6 различных целых чисел,
что сумма каждых трёх из них – простое число?

Прислать комментарий     Решение

Задача 103988

Темы:   [ Принцип Дирихле (прочее) ]
[ Деление с остатком ]
Сложность: 4-
Классы: 7,8,9

Найдётся ли среди чисел вида 1...1 число, которое делится на 57?

Прислать комментарий     Решение

Задача 105189

Темы:   [ Десятичная система счисления ]
[ Деление с остатком ]
Сложность: 4-
Классы: 8,9,10

Докажите, что для любого натурального числа d существует делящееся на него натуральное число n, в десятичной записи которого можно вычеркнуть некоторую ненулевую цифру так, что получившееся число тоже будет делиться на d.

Прислать комментарий     Решение

Страница: << 82 83 84 85 86 87 88 >> [Всего задач: 606]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .