ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 4 задачи
Версия для печати
Убрать все задачи

Каждая из шести окружностей касается четырех из оставшихся пяти (рис.). Докажите, что для любой пары несоприкасающихся окружностей (из этих шести) их радиусы и расстояние между центрами связаны соотношением d2 = r12 + r22±6r1r2 (к плюск — если окружности не лежат одна внутри другой, к минуск — в противном случае).


Вниз   Решение


На высотах $AA_0$, $BB_0$, $CC_0$ остроугольного неравностороннего треугольника $ABC$ отметили соответственно точки $A_1, B_1, C_1$ так, что  $AA_1 = BB_1 = CC_1 = R$,  где $R$ – радиус описанной окружности треугольника $ABC$. Докажите, что центр описанной окружности треугольника $A_1B_1C_1$ совпадает с центром вписанной окружности треугольника $ABC$.

ВверхВниз   Решение


Точки A, B и C лежат на одной прямой, причём B находится между A и C.
Найдите геометрическое место таких точек M, что радиусы описанных окружностей треугольников AMB и CMB равны.

ВверхВниз   Решение


В четырёхугольнике ABCD  AB = BC,  ∠A = ∠B = 20°,  ∠C = 30°.  Продолжение стороны AD пересекает BC в точке M, а продолжение стороны CD пересекает AB в точке N. Найдите угол AMN.

Вверх   Решение

Задачи

Страница: 1 [Всего задач: 2]      



Задача 77963

Темы:   [ Вычисление углов ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Применение тригонометрических формул (геометрия) ]
[ Правильные многоугольники ]
Сложность: 5
Классы: 9,10,11

В равнобедренном треугольнике ABC  ∠ABC = 20°.  На равных сторонах CB и AB взяты соответственно точки P и Q так, что  ∠PAC = 50°  и  ∠QCA = 60°.
Докажите, что  ∠PQC = 30°.

Прислать комментарий     Решение

Задача 104108

Темы:   [ Признаки и свойства равнобедренного треугольника. ]
[ Вычисление углов ]
[ Применение тригонометрических формул (геометрия) ]
[ Правильные многоугольники ]
Сложность: 5
Классы: 9,10,11

В четырёхугольнике ABCD  AB = BC,  ∠A = ∠B = 20°,  ∠C = 30°.  Продолжение стороны AD пересекает BC в точке M, а продолжение стороны CD пересекает AB в точке N. Найдите угол AMN.

Прислать комментарий     Решение

Страница: 1 [Всего задач: 2]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .