ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

В колоде часть карт лежит рубашкой вниз. Время от времени Петя вынимает из колоды пачку из одной или нескольких подряд идущих карт, в которой верхняя и нижняя карты лежат рубашкой вниз, переворачивает всю пачку как одно целое и вставляет её в то же место колоды (если "пачка" состоит лишь из одной карты, то требуется только, чтобы она лежала рубашкой вниз). Докажите, что в конце концов все карты лягут рубашкой вверх, как бы ни действовал Петя.

   Решение

Задачи

Страница: << 12 13 14 15 16 17 18 >> [Всего задач: 288]      



Задача 98093

Темы:   [ Инварианты ]
[ Обыкновенные дроби ]
[ Произведения и факториалы ]
Сложность: 4-
Классы: 8,9,10

Автор: Фомин Д.

На доске выписаны числа 1, ½, ⅓, ..., 1/100. Выбираем из написанных на доске два произвольных числа a и b, стираем их и пишем на доску число
a + b + ab.  Такую операцию проделываем 99 раз, пока не останется одно число. Какое это число? Найдите его и докажите, что оно не зависит от последовательности выбора чисел.

Прислать комментарий     Решение

Задача 105076

Темы:   [ Полуинварианты ]
[ Двоичная система счисления ]
[ Перестановки и подстановки (прочее) ]
[ Процессы и операции ]
[ Индукция (прочее) ]
[ Принцип крайнего (прочее) ]
Сложность: 4-
Классы: 8,9,10

В колоде часть карт лежит рубашкой вниз. Время от времени Петя вынимает из колоды пачку из одной или нескольких подряд идущих карт, в которой верхняя и нижняя карты лежат рубашкой вниз, переворачивает всю пачку как одно целое и вставляет её в то же место колоды (если "пачка" состоит лишь из одной карты, то требуется только, чтобы она лежала рубашкой вниз). Докажите, что в конце концов все карты лягут рубашкой вверх, как бы ни действовал Петя.

Прислать комментарий     Решение

Задача 109523

Темы:   [ Инварианты и полуинварианты (прочее) ]
[ Квадратный трехчлен (прочее) ]
[ Процессы и операции ]
Сложность: 4-
Классы: 9,10,11

Автор: Перлин А.

Квадратный трёхчлен  f(x) разрешается заменить на один из трёхчленов      или     Можно ли с помощью таких операций из квадратного трёхчлена  x² + 4x + 3  получить трёхчлен  x² + 10x + 9?

Прислать комментарий     Решение

Задача 30763

Темы:   [ Инварианты ]
[ Вспомогательная раскраска ]
Сложность: 4
Классы: 7,8,9

Дно прямоугольной коробки вымощено плитками 1 × 4 и 2 × 2. Плитки высыпали из коробки и одна плитка 2 × 2 потерялась. Ее заменили на плитку 1 × 4. Докажите, что теперь дно коробки вымостить не удастся.

Прислать комментарий     Решение

Задача 30776

Тема:   [ Инварианты ]
Сложность: 4
Классы: 8,9

В задаче 19 выясните, какие карточки можно получить из карточки (5, 19), а какие нельзя.

Прислать комментарий     Решение

Страница: << 12 13 14 15 16 17 18 >> [Всего задач: 288]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .