ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 3 задачи
Версия для печати
Убрать все задачи

Ортогональной проекцией равнобедренного прямоугольного треугольника на плоскость α является правильный треугольник. Найдите угол, образованный гипотенузой данного треугольника с плоскостью α .

Вниз   Решение


Ортогональной проекцией тетраэдра на плоскость одной из его граней является трапеция площади 1.
  а) Может ли ортогональной проекцией этого тетраэдра на плоскость другой его грани быть квадрат площади 1?
  б) А квадрат площади 1/2019?

ВверхВниз   Решение


Вычислите $$\int \limits_0^{\pi} \big(|\sin(1999x)|-|\sin(2000x)|\big) \, dx.$$

Вверх   Решение

Задачи

Страница: 1 [Всего задач: 4]      



Задача 111345

Темы:   [ Интеграл и площадь ]
[ Квадратные уравнения. Теорема Виета ]
Сложность: 3+
Классы: 11

Числа p и q таковы, что параболы  y = – 2x²  и  y = x² + px + q  пересекаются в двух точках, ограничивая некоторую фигуру.
Найдите уравнение вертикальной прямой, делящей площадь этой фигуры пополам.

Прислать комментарий     Решение

Задача 105091

Темы:   [ Вычисление интегралов ]
[ Периодичность и непериодичность ]
[ Интеграл и площадь ]
[ Аффинные преобразования и их свойства ]
Сложность: 3+
Классы: 10,11

Вычислите $$\int \limits_0^{\pi} \big(|\sin(1999x)|-|\sin(2000x)|\big) \, dx.$$

Прислать комментарий     Решение

Задача 116889

Темы:   [ Исследование квадратного трехчлена ]
[ Теорема о промежуточном значении. Связность ]
[ Приложения интеграла (прочее) ]
Сложность: 3+
Классы: 10,11

Автор: Фольклор

Коэффициенты квадратного уравнения  ax² + bx + c = 0  удовлетворяют условию  2a + 3b + 6c = 0.
Докажите, что это уравнение имеет корень на интервале  (0, 1).

Прислать комментарий     Решение

Задача 109507

Темы:   [ Выпуклые многоугольники ]
[ Выпуклая оболочка и опорные прямые (плоскости) ]
[ Многоугольники (неравенства) ]
[ Метод координат на плоскости ]
[ Интеграл и длина ]
Сложность: 7
Классы: 10,11

Миша мысленно расположил внутри данного круга единичного радиуса выпуклый многоугольник, содержащий центр круга, а Коля пытается угадать его периметр. За один шаг Коля указывает Мише какую-либо прямую и узнает от него, пересекает ли она многоугольник. Имеет ли Коля возможность наверняка угадать периметр многоугольника: а) через 3 шага с точностью до 0,3; б) через 2007 шагов с точностью до 0,003?
Прислать комментарий     Решение


Страница: 1 [Всего задач: 4]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .