ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Дан остроугольный треугольник ABC. На сторонах AB и BC во внешнюю сторону построены равные прямоугольники ABMN и LBCK так, что  AB = KC.
Докажите, что прямые AL, NK и MC пересекаются в одной точке.

   Решение

Задачи

Страница: << 70 71 72 73 74 75 76 >> [Всего задач: 402]      



Задача 66230

Темы:   [ Прямоугольники и квадраты. Признаки и свойства ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Вписанные и описанные окружности ]
[ Признаки и свойства параллелограмма ]
[ Биссектриса угла (ГМТ) ]
Сложность: 4-
Классы: 8,9,10

На стороне AD квадрата ABCD во внутреннюю сторону построен тупоугольный равнобедренный треугольник AED. Вокруг него описана окружность и проведён её диаметр AF, на стороне CD выбрана точка G так, что  CG = DF.  Докажите, что угол BGE меньше половины угла AED.

Прислать комментарий     Решение

Задача 73642

Темы:   [ Три прямые, пересекающиеся в одной точке ]
[ Вспомогательная площадь. Площадь помогает решить задачу ]
[ Отношение площадей треугольников с общим основанием или общей высотой ]
[ Признаки и свойства параллелограмма ]
[ Выпуклые многоугольники ]
Сложность: 4-
Классы: 8,9

а) Дан выпуклый многоугольник A1A2...An. На стороне A1A2 взяты точки B1 и D2, на стороне A2A3 – точки B2 и D3, ..., на стороне AnA1 – точки Bn и D1 так, что если построить параллелограммы A1B1C1D1, A2B2C2D2, ..., AnBnCnDn, то прямые A1C1, A2C2, ..., AnCn пересекутся в одной точке. Докажите равенство  A1B1·A2B2·...·AnBn = A1D1·A2D2·...·AnDn.

б) Докажите, что для треугольника верно и обратное утверждение: если на стороне A1A2 выбраны точки B1 и D2, на стороне A2A3 – точки B2 и D3, а на стороне A3A1 – точки B3 и D1 так, что  A1B1·A2B2·A3B3 = A1D1·A2D2· A3D3,  то, построив параллелограммы A1B1C1D1, A2B2C2D2 и A3B3C3D3, получим прямые A1C1, A2C2 и A3C3, пересекающиеся в одной точке.

Прислать комментарий     Решение

Задача 105205

Темы:   [ Вспомогательная окружность ]
[ Вписанный угол, опирающийся на диаметр ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Признаки и свойства параллелограмма ]
[ Три прямые, пересекающиеся в одной точке ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Средняя линия треугольника ]
[ Векторы помогают решить задачу ]
Сложность: 4-
Классы: 8,9,10

Дан остроугольный треугольник ABC. На сторонах AB и BC во внешнюю сторону построены равные прямоугольники ABMN и LBCK так, что  AB = KC.
Докажите, что прямые AL, NK и MC пересекаются в одной точке.

Прислать комментарий     Решение

Задача 108114

Темы:   [ Четырехугольники (прочее) ]
[ Отношение, в котором биссектриса делит сторону ]
[ Теорема Фалеса и теорема о пропорциональных отрезках ]
[ Признаки и свойства параллелограмма ]
[ Серединный перпендикуляр к отрезку (ГМТ) ]
Сложность: 4-
Классы: 8,9

В плоскости выпуклого четырёхугольника ABCD расположена точка P. Проведены биссектрисы PK,PL, PM и PN треугольников APB, BPC, CPD и DPA соответственно.
  а) Найдите хотя бы одну такую точку P, для которой четырёхугольник KLMN – параллелограмм.
  б) Найдите все такие точки.

Прислать комментарий     Решение

Задача 108211

Темы:   [ Вспомогательная окружность ]
[ Три точки, лежащие на одной прямой ]
[ Вписанные четырехугольники (прочее) ]
[ Признаки и свойства параллелограмма ]
Сложность: 4-
Классы: 9,10,11

Внутри параллелограмма ABCD выбрана точка M, а внутри треугольника AMD точка N, причём  ∠MNA + ∠ MCB = ∠MND + ∠MBC = 180°.
Докажите, что прямые MN и AB параллельны.

Прислать комментарий     Решение

Страница: << 70 71 72 73 74 75 76 >> [Всего задач: 402]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .