Страница:
<< 70 71 72 73
74 75 76 >> [Всего задач: 402]
|
|
Сложность: 4- Классы: 8,9,10
|
На стороне AD квадрата ABCD во внутреннюю сторону построен тупоугольный равнобедренный треугольник AED. Вокруг него описана окружность и проведён её диаметр AF, на стороне CD выбрана точка G так, что CG = DF. Докажите, что угол BGE меньше половины угла AED.
а) Дан выпуклый многоугольник A1A2...An. На стороне A1A2 взяты точки B1 и D2, на стороне A2A3 – точки B2 и D3, ..., на стороне AnA1 – точки Bn и D1 так, что если построить параллелограммы A1B1C1D1, A2B2C2D2, ..., AnBnCnDn, то прямые A1C1, A2C2, ..., AnCn пересекутся в одной точке. Докажите равенство A1B1·A2B2·...·AnBn = A1D1·A2D2·...·AnDn.
б) Докажите, что для треугольника верно и обратное утверждение: если на стороне
A1A2 выбраны точки
B1 и
D2, на стороне
A2A3 – точки
B2 и
D3, а на стороне
A3A1 – точки
B3 и
D1 так, что
A1B1·
A2B2·
A3B3 =
A1D1·
A2D2·
A3D3, то, построив параллелограммы
A1B1C1D1,
A2B2C2D2 и
A3B3C3D3, получим прямые
A1C1,
A2C2 и
A3C3, пересекающиеся в одной точке.
|
|
Сложность: 4- Классы: 8,9,10
|
Дан остроугольный треугольник ABC. На сторонах AB и BC во внешнюю сторону построены равные прямоугольники ABMN и LBCK так, что AB = KC.
Докажите, что прямые AL, NK и MC пересекаются в одной точке.
В плоскости выпуклого четырёхугольника ABCD расположена точка P.
Проведены биссектрисы PK,PL, PM и PN треугольников APB, BPC, CPD и DPA соответственно.
а) Найдите хотя бы одну такую точку P, для которой четырёхугольник
KLMN – параллелограмм.
б) Найдите все такие точки.
|
|
Сложность: 4- Классы: 9,10,11
|
Внутри параллелограмма ABCD выбрана точка M, а внутри треугольника AMD точка N, причём ∠MNA + ∠ MCB = ∠MND + ∠MBC = 180°.
Докажите, что прямые MN и AB параллельны.
Страница:
<< 70 71 72 73
74 75 76 >> [Всего задач: 402]