ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Материалы по этой теме:
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Некоторые из чисел a1, a2, ..., a200 написаны синим карандашом, а остальные — красным. Если стереть все красные числа, то останутся все натуральные числа от 1 до 100, записанные в порядке возрастания. Если же стереть все синие числа, то останутся все натуральные числа от 100 до 1, записанные в порядке убывания. Докажите, что среди чисел a1, a2, ..., a100 содержатся все натуральные числа от 1 до 100 включительно. ![]() |
Страница: << 78 79 80 81 82 83 84 >> [Всего задач: 694]
Таблица имеет форму квадрата со стороной длины n. В первой строчке таблицы стоит одно число – 1. Во второй – два числа – две двойки, в третьей – три четвёрки, и т.д.:
Бесконечная последовательность чисел xn определяется условиями: xn+1 = 1 – |1 – 2xn|, причём 0 ≤ x1 ≤ 1.
При разложении чисел A и B в бесконечные десятичные дроби длины минимальных периодов этих дробей равны 6 и 12 соответственно. Чему может быть равна длина минимального периода числа A + B?
Из таблицы
Страница: << 78 79 80 81 82 83 84 >> [Всего задач: 694] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |