ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Существует ли натуральное число, делящееся на 1998, сумма цифр которого меньше 27?

   Решение

Задачи

Страница: << 9 10 11 12 13 14 15 [Всего задач: 73]      



Задача 107860

Темы:   [ Признаки делимости на 3 и 9 ]
[ Десятичная система счисления ]
[ Признаки делимости (прочее) ]
[ Полуинварианты ]
Сложность: 4
Классы: 8,9,10

Существует ли натуральное число, делящееся на 1998, сумма цифр которого меньше 27?

Прислать комментарий     Решение

Задача 73675

Темы:   [ Десятичная система счисления ]
[ Процессы и операции ]
[ Обратный ход ]
[ Полуинварианты ]
[ Метод спуска ]
Сложность: 5+
Классы: 8,9,10

С натуральным числом (записываемым в десятичной системе) разрешено проделывать следующие операции:

А) приписать на конце цифру 4;

Б) приписать на конце цифру 0;

В) разделить на 2 (если число чётно).

Например, если с числом 4 проделаем последовательно операции В, В, А и Б, то получим число 140.

а) Из числа 4 получите число 1972.

б)* Докажите, что из числа 4 можно получить любое натуральное число.
Прислать комментарий     Решение


Задача 110198

Темы:   [ Задачи с неравенствами. Разбор случаев ]
[ Упорядочивание по возрастанию (убыванию) ]
[ Процессы и операции ]
[ Разбиения на пары и группы; биекции ]
[ Полуинварианты ]
Сложность: 5
Классы: 8,9,10,11

а) В 99 ящиках лежат яблоки и апельсины.
Докажите, что можно так выбрать 50 ящиков, что в них окажется не менее половины всех яблок и не менее половины всех апельсинов.

б) В 100 ящиках лежат яблоки и апельсины.
Докажите, что можно так выбрать 34 ящика, что в них окажется не менее трети всех яблок и не менее трети всех апельсинов.

Прислать комментарий     Решение

Страница: << 9 10 11 12 13 14 15 [Всего задач: 73]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .