Страница:
<< 9 10 11 12 13
14 15 >> [Всего задач: 73]
|
|
Сложность: 5- Классы: 8,9,10
|
За круглым столом сидят десять человек, перед каждым – несколько орехов.
Всего орехов – сто. По общему сигналу каждый передаёт часть своих орехов соседу справа: половину, если у него (у того, кто передаёт) было чётное число, или один орех плюс половину остатка – если нечётное число. Такая операция проделывается второй раз, затем третий и так далее, до бесконечности. Докажите, что через некоторое время у всех станет по десять орехов.
|
|
Сложность: 5- Классы: 8,9,10,11
|
В семейном альбоме есть десять фотографий. На каждой из них изображены три человека: в центре стоит мужчина, слева от мужчины – его сын, а справа – его брат. Какое наименьшее количество различных людей может быть изображено на этих фотографиях, если известно, что все десять мужчин, стоящих в центре, различны?
|
|
Сложность: 5- Классы: 9,10,11
|
С числом разрешается проводить одно из двух действий: возводить
в квадрат или прибавлять единицу. Даны числа
19
и
98
. Можно
ли из них за одно и то же количество действий получить равные числа?
На шахматную доску произвольным образом уложили 32 доминошки
(прямоугольника 1×2), так что доминошки не перекрываются. Затем к доске добавили
одну клетку, как показано на рисунке. Разрешается вынимать любую доминошку, а
затем класть её на две соседние пустые клетки.
Докажите, что можно расположить все доминошки
горизонтально.
|
|
Сложность: 5+ Классы: 9,10,11
|
Для чисел 1, ..., 1999, расставленных по окружности, вычисляется сумма произведений всех наборов из 10 чисел, идущих подряд.
Найдите расстановку чисел, при которой полученная сумма наибольшая.
Страница:
<< 9 10 11 12 13
14 15 >> [Всего задач: 73]