Страница:
<< 16 17 18 19
20 21 22 >> [Всего задач: 166]
Каждую вершину трапеции отразили симметрично относительно диагонали, не содержащей эту вершину.
Докажите, что если получившиеся точки образуют четырёхугольник, то он также является трапецией.
Пусть E – точка пересечения боковых сторон AD и BC трапеции ABCD, Bn+1 – точка пересечения прямых AnC и BD (A0 = A), An+1 – точка пересечения прямых
EBn+1 и AB. Докажите, что AnB = AB/n+1.
|
|
Сложность: 4 Классы: 9,10,11
|
В неравнобедренном треугольнике $ABC$ точки $A_0$, $B_0$, $C_0$ – середины сторон $BC$, $CA$, $AB$ соответственно. Биссектриса угла $C$ пересекает прямые $A_0C_0$ и $B_0C_0$ в точках $B_1$ и $A_1$. Докажите, что прямые $AB_1$, $BA_1$ и $A_0B_0$ пересекаются в одной точке.
В трапеции ABCD AB – основание, AC = BC, H – середина AB. Пусть l – прямая, проходящая через точку H и пересекающая прямые AD и BD в точках P и Q соответственно. Докажите, что либо углы ACP и QCB равны, либо их сумма равна 180°.
Диагонали трапеции
ABCD пересекаются в точке
O . Описанные
окружности треугольников
AOB и
COD пересекаются в точке
М на
основании
AD . Докажите, что треугольник
BMC равнобедренный.
Страница:
<< 16 17 18 19
20 21 22 >> [Всего задач: 166]