ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Окружности S1 и S2 пересекаются в точках M и N. Докажите, что если вершины A и C некоторого прямоугольника ABCD лежат на окружности S1, а вершины B и D – на окружности S2, то точка пересечения диагоналей прямоугольника лежит на прямой MN.

   Решение

Задачи

Страница: << 92 93 94 95 96 97 98 >> [Всего задач: 501]      



Задача 32070

Темы:   [ Обратный ход ]
[ Сумма углов треугольника. Теорема о внешнем угле. ]
[ Правильный (равносторонний) треугольник ]
[ Прямоугольники и квадраты. Признаки и свойства ]
Сложность: 4-
Классы: 7,8,9

Точку внутри квадрата соединили с вершинами – получились четыре треугольника, один из которых равнобедренный с углами при основании (стороне квадрата) 15°. Докажите, что противоположный ему треугольник правильный.

Прислать комментарий     Решение

Задача 108179

Темы:   [ Три прямые, пересекающиеся в одной точке ]
[ Произведение длин отрезков хорд и длин отрезков секущих ]
[ Пересекающиеся окружности ]
[ Прямоугольники и квадраты. Признаки и свойства ]
Сложность: 4-
Классы: 8,9

Окружности S1 и S2 пересекаются в точках M и N. Докажите, что если вершины A и C некоторого прямоугольника ABCD лежат на окружности S1, а вершины B и D – на окружности S2, то точка пересечения диагоналей прямоугольника лежит на прямой MN.

Прислать комментарий     Решение

Задача 111812

Темы:   [ Свойства симметрий и осей симметрии ]
[ Шестиугольники ]
[ Равные треугольники. Признаки равенства (прочее) ]
[ Ромбы. Признаки и свойства ]
[ Сумма внутренних и внешних углов многоугольника ]
Сложность: 4-
Классы: 9

Дан выпуклый шестиугольник P1P2P3P4P5P6, все стороны которого равны. Каждую его вершину отразили симметрично относительно прямой, проходящей через две соседние вершины. Полученные точки обозначили через Q1, Q2, Q3, Q4, Q5 и Q6 соответственно. Докажите, что треугольники Q1Q3Q5 и Q2Q4Q6 равны.

Прислать комментарий     Решение

Задача 55098

Темы:   [ Теорема косинусов ]
[ Площадь треугольника (через две стороны и угол между ними) ]
[ Признаки и свойства параллелограмма ]
[ Ромбы. Признаки и свойства ]
Сложность: 4
Классы: 8,9

Стороны параллелограмма равны 3 и 2, а угол между ними равен arccos$ {\frac{5}{16}}$. Две взаимно перпендикулярные прямые делят параллелограмм на четыре равновеликие части. Найдите отрезки, на которые эти прямые делят стороны параллелограмма.

Прислать комментарий     Решение


Задача 52858

Темы:   [ Вспомогательная окружность ]
[ Вписанный угол, опирающийся на диаметр ]
[ Вспомогательные равные треугольники ]
[ Прямоугольники и квадраты. Признаки и свойства ]
Сложность: 4
Классы: 8,9

Дан квадрат ABCD. Точки P и Q лежат на сторонах AB и BC соответственно, причём  BP = BQ.  Пусть H – основание перпендикуляра, опущенного из точки B на отрезок PC. Докажите, что угол DHQ – прямой.

Прислать комментарий     Решение

Страница: << 92 93 94 95 96 97 98 >> [Всего задач: 501]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .