ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 90 91 92 93 94 95 96 >> [Всего задач: 501]      



Задача 52962

Темы:   [ Против большей стороны лежит больший угол ]
[ Теорема Пифагора (прямая и обратная) ]
[ Теорема косинусов ]
[ Прямоугольники и квадраты. Признаки и свойства ]
Сложность: 3+
Классы: 8,9

Площадь прямоугольника ABCD равна 48, а диагональ равна 10. В плоскости прямоугольника ABCD выбрана точка O так, что  OB = OD = .
Найдите расстояние от точки O до ближайшей к ней вершины прямоугольника.

Прислать комментарий     Решение

Задача 52963

Темы:   [ Против большей стороны лежит больший угол ]
[ Теорема Пифагора (прямая и обратная) ]
[ Теорема косинусов ]
[ Прямоугольники и квадраты. Признаки и свойства ]
Сложность: 3+
Классы: 8,9

Дан квадрат ABCD со стороной 8. Точка O выбрана в плоскости квадрата так, что  OB = 10OD = 6.  Найдите угол между вектором     и вектором, направленным из точки O в ближайшую к ней вершину квадрата.

Прислать комментарий     Решение

Задача 53179

Темы:   [ Площадь трапеции ]
[ Теорема Пифагора (прямая и обратная) ]
[ Признаки и свойства касательной ]
[ Прямоугольники и квадраты. Признаки и свойства ]
Сложность: 3+
Классы: 8,9

Окружность касается сторон AB и AD прямоугольника ABCD и пересекает сторону DC в единственной точке F и сторону BC в единственной точке E.
Найдите площадь трапеции AFCB, если  AB = 32,  AD = 40  и  BE = 1.

Прислать комментарий     Решение

Задача 54110

Темы:   [ Поворот помогает решить задачу ]
[ Поворот на $90^\circ$ ]
[ Вспомогательные равные треугольники ]
[ Прямоугольники и квадраты. Признаки и свойства ]
Сложность: 3+
Классы: 8,9

На сторонах AB, BC, CD, DA квадрата ABCD взяты соответственно точки N, K, L, M, делящие эти стороны в одном и том же отношении (при обходе по часовой стрелке). Докажите, что KLMN – также квадрат.

Прислать комментарий     Решение

Задача 65053

Темы:   [ Прямоугольные треугольники (прочее) ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Равные треугольники. Признаки равенства (прочее) ]
[ Прямоугольники и квадраты. Признаки и свойства ]
[ Удвоение медианы ]
[ Центральная симметрия помогает решить задачу ]
Сложность: 3+
Классы: 8,9

Точка К – середина гипотенузы АВ прямоугольного равнобедренного треугольника ABC. Точки L и М выбраны на катетах ВС и АС соответственно так, что  BL = СМ.  Докажите, что треугольник LMK – также прямоугольный равнобедренный.

Прислать комментарий     Решение

Страница: << 90 91 92 93 94 95 96 >> [Всего задач: 501]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .