ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Материалы по этой теме:
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Докажите, что любая прямая в декартовых координатах xOy имеет уравнение вида ax + by + c = 0. где a, b, c — некоторые числа, причём хотя бы одно из чисел a, b отлично от нуля.
![]() |
Страница: << 54 55 56 57 58 59 60 >> [Всего задач: 492]
В треугольнике PQR угол QPR равен 60o. Через вершины P и R проведены перпендикуляры к сторонам QR и PQ соответственно. Точка пересечения этих перпендикуляров находится от вершин P и Q на расстоянии, равном 1. Найдите стороны треугольника PQR.
Отрезок AB является диаметром некоторой окружности. Через его
концы проведены две прямые, пересекающие окружность в точках C и
D, лежащих по одну сторону от прямой AB. Точка O, в которой
пересекаются эти прямые, равноудалена от концов диаметра AB.
Найдите радиус окружности, если CD = 1 и
В треугольнике ABC угол BAC равена 30o. Через вершины A и C проведены перпендикуляры к сторонам BC и AB соответственно. Точка пересечения этих перпендикуляров находится от вершин A и C на расстоянии, равном 1. Найдите стороны треугольника ABC.
Докажите, что любая прямая в декартовых координатах xOy имеет уравнение вида ax + by + c = 0. где a, b, c — некоторые числа, причём хотя бы одно из чисел a, b отлично от нуля.
Страница: << 54 55 56 57 58 59 60 >> [Всего задач: 492] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |