ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Докажите, что уравнение прямой с угловым коэффициентом k, проходящей через точку M0(x0;y0), имеет вид y - y0 = k(x - x0).

   Решение

Задачи

Страница: << 8 9 10 11 12 13 14 >> [Всего задач: 113]      



Задача 102317

Темы:   [ Метод координат на плоскости ]
[ Отношение площадей треугольников с общим основанием или общей высотой ]
Сложность: 3+
Классы: 8,9

На координатной плоскости заданы точки A(1;3), B(1;9), C(6;8) и E(5;1). Найдите площадь пятиугольника ABCDE, где D — точка пересечения прямых AC и BE.
Прислать комментарий     Решение


Задача 108531

Темы:   [ Метод координат на плоскости ]
[ Средняя линия трапеции ]
Сложность: 3+
Классы: 8,9

Пусть  M(x0, y0)  – середина отрезка с концами в точках  A(x1, y1)  и  B(x2, y2).  Докажите, что  x0 = ½ (x1 + x2),  y0 = ½ (y1 + y2).

Прислать комментарий     Решение

Задача 108536

Тема:   [ Метод координат на плоскости ]
Сложность: 3+
Классы: 8,9

Докажите, что уравнение прямой с угловым коэффициентом k, проходящей через точку M0(x0;y0), имеет вид y - y0 = k(x - x0).

Прислать комментарий     Решение


Задача 108545

Темы:   [ Метод координат на плоскости ]
[ Теорема Фалеса и теорема о пропорциональных отрезках ]
[ Ортогональная (прямоугольная) проекция ]
Сложность: 3+
Классы: 8,9

Даны точки  A(x1, y1),  B(x2, y2)  и неотрицательное число λ. Найдите координаты точки M луча AB, для которой  AM : AB = λ.

Прислать комментарий     Решение

Задача 108546

Темы:   [ Метод координат на плоскости ]
[ Свойства медиан. Центр тяжести треугольника. ]
[ Векторы помогают решить задачу ]
[ Средние величины ]
Сложность: 3+
Классы: 8,9

Докажите, что координаты точки пересечения медиан треугольника есть средние арифметические соответствующих координат вершин треугольника.

Прислать комментарий     Решение

Страница: << 8 9 10 11 12 13 14 >> [Всего задач: 113]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .