ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Даны точки A(- 6; - 1), B(1;2) и C(- 3; - 2). Найдите координаты вершины M параллелограмма ABMC.

   Решение

Задачи

Страница: << 8 9 10 11 12 13 14 >> [Всего задач: 98]      



Задача 108548

Темы:   [ Метод координат на плоскости ]
[ Признаки и свойства параллелограмма ]
[ Векторы помогают решить задачу ]
Сложность: 3
Классы: 8,9

Даны точки A(- 6; - 1), B(1;2) и C(- 3; - 2). Найдите координаты вершины M параллелограмма ABMC.

Прислать комментарий     Решение


Задача 57681

Темы:   [ Векторы сторон многоугольников ]
[ Свойства медиан. Центр тяжести треугольника. ]
[ Векторы помогают решить задачу ]
Сложность: 3
Классы: 8,9,10

а) Докажите, что из медиан треугольника можно составить треугольник.
б) Из медиан треугольника ABC составлен треугольник A1B1C1, а из медиан треугольника A1B1C1 составлен треугольник A2B2C2. Докажите, что треугольники ABC и A2B2C2 подобны, причем коэффициент подобия равен 3/4.
Прислать комментарий     Решение


Задача 67035

Темы:   [ Многоугольники (прочее) ]
[ Вычисление площадей ]
[ Векторы помогают решить задачу ]
Сложность: 3
Классы: 8,9,10,11

В выпуклом 12-угольнике все углы равны. Известно, что длины каких-то десяти его сторон равны 1, а длина ещё одной равна 2. Чему может быть равна площадь этого 12- угольника?
Прислать комментарий     Решение


Задача 86977

Темы:   [ Расстояние между скрещивающимися прямыми ]
[ Куб ]
[ Векторы помогают решить задачу ]
Сложность: 3
Классы: 8,9

Дан куб ABCDA1B1C1D1 с ребром a . Найдите расстояние между прямыми BD1 и DC1 и постройте их общий перпендикуляр.
Прислать комментарий     Решение


Задача 108594

Темы:   [ Экстремальные точки треугольника ]
[ Свойства медиан. Центр тяжести треугольника. ]
[ Векторы помогают решить задачу ]
[ Скалярное произведение. Соотношения ]
Сложность: 3
Классы: 8,9

Докажите, что сумма квадратов расстояний от точки M до вершин треугольника минимальна, если M – точка пересечения медиан треугольника.
Прислать комментарий     Решение


Страница: << 8 9 10 11 12 13 14 >> [Всего задач: 98]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .