ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Из вершин произвольного выпуклого четырёхугольника опущены перпендикуляры на его диагонали.
Докажите, что четырёхугольник, вершинами которого являются основания этих перпендикуляров, подобен исходному.

   Решение

Задачи

Страница: << 13 14 15 16 17 18 19 >> [Всего задач: 122]      



Задача 56468

Темы:   [ Биссектриса угла (ГМТ) ]
[ Две пары подобных треугольников ]
Сложность: 3+
Классы: 8,9

В треугольнике ABC проведены биссектрисы AA1 и BB1.
Докажите, что расстояние от любой точки M отрезка A1B1 до прямой AB равно сумме расстояний от M до прямых AC и BC.

Прислать комментарий     Решение

Задача 56479

Темы:   [ Признаки и свойства параллелограмма ]
[ Две пары подобных треугольников ]
Сложность: 3+
Классы: 9

Пусть AC – большая из диагоналей параллелограмма ABCD. Из точки C на продолжения сторон AB и AD опущены перпендикуляры CE и CF соответственно. Докажите, что  AB·AE + AD·AF = AC².

Прислать комментарий     Решение

Задача 66300

Темы:   [ Ортоцентр и ортотреугольник ]
[ Две пары подобных треугольников ]
[ Симметрия помогает решить задачу ]
[ Свойства биссектрис, конкуррентность ]
Сложность: 3+
Классы: 8,9

Автор: Соколов А.

Дан остроугольный треугольник ABC. Точки H и O – его ортоцентр и центр описанной окружности соответственно. Серединный перпендикуляр к отрезку BH пересекает стороны AB и BC в точках A1 и C1. Докажите, что OB – биссектриса угла A1OC1.

Прислать комментарий     Решение

Задача 79434

Темы:   [ Углы, опирающиеся на равные дуги и равные хорды ]
[ Две пары подобных треугольников ]
[ Вписанный угол, опирающийся на диаметр ]
Сложность: 3+
Классы: 9

На окружности выбрано пять точек A1, A2, A3, A4, H. Обозначим через hij расстояние от точки H до прямой AiAj. Доказать, что   h12h34 = h14h23.

Прислать комментарий     Решение

Задача 108616

Темы:   [ Треугольник, образованный основаниями двух высот и вершиной ]
[ Две пары подобных треугольников ]
[ Четырехугольники (прочее) ]
[ Подобные фигуры ]
Сложность: 3+
Классы: 8,9

Из вершин произвольного выпуклого четырёхугольника опущены перпендикуляры на его диагонали.
Докажите, что четырёхугольник, вершинами которого являются основания этих перпендикуляров, подобен исходному.

Прислать комментарий     Решение

Страница: << 13 14 15 16 17 18 19 >> [Всего задач: 122]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .