ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Вокруг остроугольного треугольника ABC описана окружность. Продолжения высот треугольника, проведённых из вершин A и C, пересекают окружность в точках E и F соответственно, D произвольная точка на (меньшей) дуге AC, K – точка пересечения DF и AB, L – точка пересечения DE и BC. Докажите, что прямая KL проходит через ортоцентр треугольника ABC.

   Решение

Задачи

Страница: << 11 12 13 14 15 16 17 >> [Всего задач: 157]      



Задача 108639

Темы:   [ Ортоцентр и ортотреугольник ]
[ Три точки, лежащие на одной прямой ]
[ Свойства симметрий и осей симметрии ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 4-
Классы: 8,9

Вокруг остроугольного треугольника ABC описана окружность. Продолжения высот треугольника, проведённых из вершин A и C, пересекают окружность в точках E и F соответственно, D произвольная точка на (меньшей) дуге AC, K – точка пересечения DF и AB, L – точка пересечения DE и BC. Докажите, что прямая KL проходит через ортоцентр треугольника ABC.

Прислать комментарий     Решение

Задача 108649

Темы:   [ Вспомогательная окружность ]
[ Три точки, лежащие на одной прямой ]
[ Вписанные четырехугольники (прочее) ]
[ Пятиугольники ]
[ Ортоцентр и ортотреугольник ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 4-
Классы: 8,9

В выпуклом пятиугольнике ABCDE  AB = BC,  ∠ABE + ∠DBC = ∠EBD  и   ∠AEB + ∠BDC = 180°.
Докажите, что ортоцентр треугольника BDE лежит на диагонали AC.

Прислать комментарий     Решение

Задача 108650

Темы:   [ Вспомогательные подобные треугольники ]
[ Три точки, лежащие на одной прямой ]
[ Признаки и свойства параллелограмма ]
Сложность: 4-
Классы: 8,9

На диагонали BD параллелограмма ABCD взяты точки A' и C', причём  AA' || CC'.  Точка K принадлежит отрезку A'C, прямая AK пересекает прямую CC' в точке L. Через точку K проведена прямая, параллельная BC, через точку C проведена прямая, параллельная BD. Эти две прямые пересекаются в точке M. Докажите, что точки D, M и L лежат на одной прямой.

Прислать комментарий     Решение

Задача 110861

Темы:   [ Замечательное свойство трапеции ]
[ Три точки, лежащие на одной прямой ]
Сложность: 4-
Классы: 8,9

Различные параллелограммы ABCD и AKLD расположены так, что их стороны BC и KL лежат на одной прямой, причём прямые AC и KD не параллельны. Докажите, что точка пересечения прямых AK и DC, точка пересечения прямых AB и DL, а также точка пересечения прямых AC и KD лежат на одной прямой.

Прислать комментарий     Решение

Задача 111597

Темы:   [ Вспомогательная окружность ]
[ Три точки, лежащие на одной прямой ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 4-
Классы: 8,9

Треугольник ABC вписан в окружность с центром O, X – произвольная точка внутри треугольника ABC, для которой  ∠XAB = ∠XBC = φ,  а P – такая точка, что  PXOX,  ∠XOP = φ,  причём углы XOP и XAB одинаково ориентированы. Докажите, что все такие точки P лежат на одной прямой.

Прислать комментарий     Решение

Страница: << 11 12 13 14 15 16 17 >> [Всего задач: 157]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .