Страница:
<< 13 14 15 16
17 18 19 >> [Всего задач: 157]
[Прямая Симсона]
|
|
Сложность: 4 Классы: 8,9
|
а) Докажите, что основания перпендикуляров, опущенных из точки P описанной окружности треугольника на его стороны или их продолжения, лежат на одной прямой (прямая Симсона).
б) Основания перпендикуляров, опущенных из некоторой точки P на
стороны треугольника или их продолжения, лежат на одной прямой. Докажите, что точка P лежит на описанной окружности треугольника.
|
|
Сложность: 4 Классы: 8,9,10,11
|
На хорде AC окружности ω выбрали точку B. На отрезках AB и BC как на диаметрах построили окружности ω1 и ω2 с центрами O1 и O2, которые пересекают ω второй раз в точках D и E соответственно. Лучи O1D и O2E пересекаются в точке F. Лучи AD и CE пересекаются в точке G.
Докажите, что прямая FG проходит через середину AC.
|
|
Сложность: 4 Классы: 9,10,11
|
На окружности с диаметром AC выбрана произвольная точка B, отличная от A и C. Пусть M, N – середины хорд AB, BC, а P, Q – середины меньших дуг, стягиваемых этими хордами. Прямые AQ и BC пересекаются в точке K, а прямые CP и AB – в точке L.
Докажите, что прямые MQ, NP и KL пересекаются в одной точке.
|
|
Сложность: 4 Классы: 8,9,10
|
В неравнобедренном треугольнике ABC провели биссектрисы угла ABC и угла, смежного с ним. Они пересекли прямую AC в точках B1 и B2 соответственно. Из точек B1 и B2 провели касательные к окружности ω, вписанной
в треугольник ABC, отличные от прямой AC. Они касаются ω в точках K1 и K2 соответственно. Докажите, что точки B, K1 и K2 лежат на одной прямой.
|
|
Сложность: 4 Классы: 9,10,11
|
Дан треугольник ABC и прямая l, пересекающая прямые BC, AC, AB в точках La, Lb, Lc. Перпендикуляр, восставленный из точки La к BC, пересекает AB и AC в точках Ab и Ac соответственно. Точка Oa – центр описанной окружности треугольника AAbAc. Аналогично определим Ob и Oc. Докажите, что Oa, Ob и Oc лежат на одной прямой.
Страница:
<< 13 14 15 16
17 18 19 >> [Всего задач: 157]