ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

В треугольнике ABC на сторонах AB , BC и AC соответственно точки K , L и M , причём BLK = CLM = BAC . Отрезки BM и CK пересекаются в точке P . Докажите, что четырёхугольник AKPM – вписанный.

   Решение

Задачи

Страница: << 27 28 29 30 31 32 33 >> [Всего задач: 499]      



Задача 108696

Темы:   [ Вписанные четырехугольники (прочее) ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 4
Классы: 8,9

В треугольнике ABC на сторонах AB , BC и AC соответственно точки K , L и M , причём BLK = CLM = BAC . Отрезки BM и CK пересекаются в точке P . Докажите, что четырёхугольник AKPM – вписанный.
Прислать комментарий     Решение


Задача 108893

Темы:   [ Вписанные четырехугольники (прочее) ]
[ Вспомогательная окружность ]
[ Средняя линия треугольника ]
[ Отрезок, видимый из двух точек под одним углом ]
Сложность: 4
Классы: 8,9

Точки K и L – середины диагоналей соответственно AC и BD выпуклого четырёхугольника ABCD . Прямая KL пересекает стороны AD и BC в точках X и Y соответственно. Описанная окружность треугольника AKX пересекает сторону AB в точке M . Докажите, что описанная окружность треугольника BLY тоже проходит через точку M .
Прислать комментарий     Решение


Задача 108923

Темы:   [ Вписанные четырехугольники (прочее) ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 4
Классы: 8,9

В треугольнике проведены биссектрисы AL и BM . Известно, что одна из точек пересечения описанных окружностей треугольников ACL и BCM лежит на отрезке AB . Докажите, что ACB=60o .
Прислать комментарий     Решение


Задача 108932

Темы:   [ Вписанные четырехугольники (прочее) ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Свойства биссектрис, конкуррентность ]
Сложность: 4
Классы: 8,9

Диагонали вписанного четырёхугольника ABCD пересекаются в точке O . Точка O' , симметричная точке O относительно прямой AD , лежит на описанной окружности четырёхугольника. Докажите, что O'O – биссектриса угла BO'C .
Прислать комментарий     Решение


Задача 109815

Темы:   [ Вписанные четырехугольники (прочее) ]
[ Сумма углов треугольника. Теорема о внешнем угле. ]
[ Против большей стороны лежит больший угол ]
[ Вписанные и описанные окружности ]
Сложность: 4
Классы: 8,9

Пусть O – центр описанной окружности остроугольного треугольника ABC, T – центр описанной окружности треугольника AOC, M – середина AC. На сторонах AB и BC выбраны точки D и E соответственно так, что  ∠BDM = ∠BEM = ∠B.  Докажите, что  BTDE.

Прислать комментарий     Решение

Страница: << 27 28 29 30 31 32 33 >> [Всего задач: 499]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .