ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 28 29 30 31 32 33 34 >> [Всего задач: 496]      



Задача 111676

Темы:   [ Вписанные четырехугольники ]
[ Формулы для площади треугольника ]
Сложность: 4
Классы: 8,9

Четырёхугольник ABCD — вписанный. Докажите, что

= .

Прислать комментарий     Решение

Задача 115296

Темы:   [ Вписанные четырехугольники ]
[ Геометрические неравенства ]
Сложность: 4
Классы: 8,9

Четырёхугольник ABCD вписан в окружность, при этом AB=BD и AC=BC . Докажите, что ABC <60o .
Прислать комментарий     Решение


Задача 115314

Темы:   [ Вписанные четырехугольники ]
[ Величина угла между двумя хордами и двумя секущими ]
Сложность: 4
Классы: 8,9

На стороне AC треугольника ABC отмечена точка D . Произвольный луч l , выходящий из вершины B , пересекает отрезок AC в точке K , а описанную окружность треугольника ABC — в точке L . Докажите, что описанная окружность треугольника DKL проходит через фиксированную точку, отличную от D и не зависящую от выбора луча l .
Прислать комментарий     Решение


Задача 115728

Темы:   [ Вписанные четырехугольники ]
[ Теорема синусов ]
Сложность: 4
Классы: 8,9

В окружность вписан четырёхугольник ABCD . Прямые AB и CD пересекаются в точке M , а прямые BC и AD — в точке N . Известно, что BM=DN . Докажите, что CM=CN .
Прислать комментарий     Решение


Задача 115904

Темы:   [ Вписанные четырехугольники (прочее) ]
[ Прямоугольники и квадраты. Признаки и свойства ]
[ Окружности, вписанные в сегмент ]
[ Симметрия помогает решить задачу ]
Сложность: 4
Классы: 8,9,10,11

Дан вписанный четырёхугольник ABCD. Известно, что четыре окружности, каждая из которых касается его диагоналей и описанной окружности изнутри, равны. Верно ли, что ABCD – квадрат?

Прислать комментарий     Решение

Страница: << 28 29 30 31 32 33 34 >> [Всего задач: 496]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .