ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Найдите расстояние от точки M0(x0;y0;z0) до плоскости Ax+By+Cz+D=0 .

   Решение

Задачи

Страница: << 41 42 43 44 45 46 47 >> [Всего задач: 354]      



Задача 108868

Темы:   [ Метод координат в пространстве ]
[ Расстояние между двумя точками. Уравнение сферы ]
Сложность: 4
Классы: 8,9

Найдите расстояние от точки M0(x0;y0;z0) до плоскости Ax+By+Cz+D=0 .
Прислать комментарий     Решение


Задача 109145

Темы:   [ Тождественные преобразования (тригонометрия) ]
[ Геометрические интерпретации в алгебре ]
Сложность: 4
Классы: 9,10

Показать, что sin 36o=1/4 .
Прислать комментарий     Решение


Задача 109869

Темы:   [ Упаковки ]
[ Метод координат в пространстве (прочее) ]
[ Куб ]
[ Четность и нечетность ]
[ Обход графов ]
Сложность: 4
Классы: 10,11

N³ единичных кубиков просверлены по диагонали и плотно нанизаны на нить, после чего нить связана в кольцо (то есть вершина первого кубика соединена с вершиной последнего). При каких N такое ожерелье из кубиков можно упаковать в кубическую коробку с ребром длины N?

Прислать комментарий     Решение

Задача 109957

Темы:   [ Инварианты ]
[ Метод координат на плоскости ]
[ Четность и нечетность ]
[ Процессы и операции ]
[ Геометрия на клетчатой бумаге ]
Сложность: 4
Классы: 8,9,10,11

Автор: Храмцов Д.

Ножки циркуля находятся в узлах бесконечного листа клетчатой бумаги, клетки которого – квадраты со стороной 1. Разрешается, не меняя раствора циркуля, поворотом его вокруг одной из ножек перемещать вторую ножку в другой узел на листе. Можно ли за несколько таких шагов поменять ножки циркуля местами?

Прислать комментарий     Решение

Задача 111603

Темы:   [ Четырехугольник: вычисления, метрические соотношения. ]
[ Применение тригонометрических формул (геометрия) ]
Сложность: 4
Классы: 8,9

Укажите все выпуклые четырёхугольники, у которых суммы синусов противолежащих углов равны.
Прислать комментарий     Решение


Страница: << 41 42 43 44 45 46 47 >> [Всего задач: 354]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .