Страница:
<< 26 27 28 29
30 31 32 >> [Всего задач: 496]
|
|
Сложность: 4 Классы: 9,10,11
|
В остроугольном треугольнике $ABC$ с высотой $AH=h$ проведена прямая через центры $O$ и $I$ описанной и вписанной окружностей. Эта прямая пересекает стороны $AB$ и $AC$ в точках $F$ и $N$ соответственно, причем около четырехугольника $BFNC$ можно описать окружность. Найдите сумму расстояний от ортоцентра треугольника $ABC$ до его вершин.
|
|
Сложность: 4 Классы: 9,10,11
|
В треугольнике ABC сторона BC равна полусумме двух других сторон. Через точку A и середины B', C' сторон AB и AC проведена окружность Ω и к ней из центра тяжести треугольника проведены касательные. Доказать, что одна из точек касания является центром I вписанной окружности треугольника ABC.
На стороне AB квадрата ABCD взята точка K, на стороне CD – точка L, на отрезке KL – точка M. Докажите, что вторая (отличная от M) точка пересечения окружностей, описанных около треугольников AKM и MLC, лежит на диагонали AC.
В треугольнике
ABC на сторонах
AB ,
BC и
AC
соответственно точки
K ,
L и
M , причём
BLK = CLM = BAC . Отрезки
BM
и
CK пересекаются в точке
P . Докажите, что
четырёхугольник
AKPM – вписанный.
Точки
K и
L – середины диагоналей соответственно
AC и
BD выпуклого четырёхугольника
ABCD . Прямая
KL пересекает стороны
AD и
BC в точках
X и
Y
соответственно. Описанная окружность треугольника
AKX
пересекает сторону
AB в точке
M . Докажите, что
описанная окружность треугольника
BLY тоже проходит
через точку
M .
Страница:
<< 26 27 28 29
30 31 32 >> [Всего задач: 496]